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ABSTRACT

;

Temperature-time patterns for the carbonization of coal-char briquets were
computed with an electronic digital computer for various briquet sizes, film heat
transfer coefficients and two shock heating methods - hot flue gas and hot fluidized
solids. This represents solution of an unusual heat transfer protlem wherein con-
ductivity and specific heat are strong functions of temperature. Heating rate cor-
relations evolved from the computed results permit extension of the data to conditions
not included directly in the computations.

Combination of the thermal patterns with experimental briquet expansivity
data yielded information on the relative magnitude of thermal stresses in briquets
undergoing carbonization. Excessive stresses lead to deleterious briquet fracturing.

The assembled data supply the necessary background for estimation of
operability limits for briquet carbonization by shock heating procedures and can be
used to define physical conditions and dimensions in the design of carbonization
units in formcoking processes.
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INTRODUCTION

The work reported here is part of a program aimed at the development of
‘a continuous process for the production of formcoke suitable for blast furnace use.
The potential advantages of such a process are lower investment costs/ton of coke,
the ability to utilize the vast reserves of non-metallurgical grade coal, and the
production of a product coke having uniform size and gquality.

Experimental work carried out in these laboratories has shown that such
a process can be developed based on briquetting followed by continuous coking of
the briquets. The briquets are formulated from low temperature char, coal and a
pitch binder. The briquetting aspects of this program will be discussed in sub-~
sequent papers. The present paper is concerned with the carbonization of the
briquets and particularly with heat transfer problems associated with this process.

The briquets require very critical control in the carbonization process
to yield acceptable formcoke. On the one hand, shock heating is necessary to
prevent plastic deformation, and on the other, too severe shock heating causes
fradturing of the briquets. Deformation and binding of briquets would cause in-~
operability in any continuous process and fracturing of the formcoke into small
pieces would make it unacceptable for blast furnaces.

There are two immediate objectives of thls work. One is the determination
of the heating rates in briquets subjected to various methods of shock heating.
‘These rates are required for the rational design of large scale carbonizing equip-
ment. The other objective is to determine, by way of calculated thermal patterns
within briquets undergoing carbonization, the relative magnitude of thermal stresses.
Excessive thermal stresses are believed responsible for deleterious fracturing.
Knowledge of these stresses produced under various conditions and methods of shock
heating would be useful in the selection of the most favorable process for pro-
ducing intact formcoke. Some empirical data, gathered from small scale laboratory
éxperiments, outline the general thermal regime required for successful carbonization
of briquets. The calculated temperature distribution within these briquets during
eerhonizatlon can thus serve as a guide for selection of processes and equipment for
large scale equipment. The general principle that will be adapted, as will be dis-
cussed later, is that the temperature gradient within a briguet undergoing carboni-
zation shall be no greater than that corresponding to the operability limits pre-
scribed by small scale work,

Attainment of both of the above objectives hinges upon solution of the
problem of heat transfer to and through a briquet. This problem defies solution
ip%a rigorous analytical form because both the thermal conductivity and the specific
heat are strongly temperature dependent, as is established in a companion paper.
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Therefore, recourse was had to an approximation method or numerical solution of the
differential equations which involved use of an IBM 650 Digital Computer. The
machine computations were carried out at the University of Pittsburgh Computing
Center and were programmed to define the thermal pattern in a briquet at various
times as a function of briquet size, film heat transfer coefficient, and two sbock
heating methods - with hot-flue gas and with hot fluidized solids. Estimaticn of
the film coefficient for a-heating medium then allows seleciion of the appropriate
heating pattern for the briquets. an empiricél correlation was derived from tze
computed results which relates the rate of heating of briquets to ail the important
variables. With the law of squares for heated bodies, the correlation permits
rapid extrapolation to many heating cases not directly covered in the computer
program. The accuracy of the correlation is within 5%.

Dilatometer measurements were made to determine the magnitude of thermal
expansion and contraction that occurs during carbonization of briquets. By coupling
these data with the computed thermal patterns, the relative magnitude of thermal
stresses can be estimated from the Timoshenko theory of elasticity for beated iso-
tropic and elastic bodies.

Direct experimental data for the temperature rise of the center of =z
heated briquet are compared with the computed results in a few cases where a com-
parison can be made. Reasonable agreement with the comparabls cases lends some
degree of confidence to the other computed results. Mary of the briguet heating
cases investigated by machine computation cannot be easily examined experimentally
on a small scale.

THE PROBLEM AND GENERAL PROPERTTES CF THE SOLUTIONS

The problem of heat conduction in carbonaceous materials
previously. Burke! et al. discussed some years ago mathematic r
the rate of heat conduction through coal undergoing cartonizatvion.
order to arrive at an analytical solution, these authors t c
responded to the illegitimate assumption that the thermal 4i ), WES
independent of temperature. A constant o for carbo:aceous ﬂa+er1_ls cannot ve
assumed. The strong temperature dependence of thermal conductivity (k) aand specific
heat (c) has been shown in a companion paper. ©& is given by & = k/ c where p
is the density. The non-constant conductivity of coal was also reported oy MilTard®
who attempted solution of the Fourier heat-flow equation by use of an eleczrical
analog technique. He could obtain agreement between calculated data and experi-
mental thermal patterns in a coke oven only by injecting sizable heats-of-carboni-
zation into the calculations.

The problem that concerns us is to define the temperature profile as a
function of time within a spherical ‘brigquet undergoing carbonization, taking full
account of the temperature dependence of the thermal paramezers - the conductivity
and specific heat. Two different methods of direct shock heating are considered,
namely,. with hot gas and hot fluidized solids.

At least in principle, the problem can be handled by solution of the
Fourier heat conduction equation. The equation, in polar noordinates, for the
general case of a sphere wherein the thermal diffusivity is temperature dependent,

T d(pc) *T 2 o.T -
(e GONE = R(L +250) + d4 (o) "
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This equation must be solved with these boundary conditions:

T=1T, at t = o for all values of r.

and '—Ji:élr = .AZ‘{7;“77) at x = My (2) )
.

To, the ambient temperature of the heating medium surrounding the briquet, varies
unless the heat content of the medium greatly exceeds that of the briquet. The
variation of Ty with time can be derived from heat balance, yielding

N

iT = e (5T o

The above relation holds for continuous carbonization where concurrent flow of
heating medium and briquets prevail. It also holds for batch carbonization where
no temperature gradient exists within the heating medium.

It thus becomes evident, that solution of the heat flow equation (1), with
the complex boundary conditions, as well as the non-constant parameters k and c,
cannot be obtained by the usual analytical methods. A numerical method of solution
is consequently necessary.

Although an analytical solution of the above equations cannot be obtained,
certain interesting properties of the solutions follow from the form of equation (1)
and the boundary conditions.

Let new variables be introduced, namely X = r/rg, t' = t/roa, and h' = Arg.
It can now be readily verified that the temperatures, as expressed in equations (1)
and (2), become functions only of X, t', k, h', and M. It follows that the solution
is a function only of X and t' if k, M, and hrg are maintained constent. Conse-
quently, an equivalent temperature profile is established within a briguet at cor-
responding values of the relative radius X at a time inversely proportional to the
square of 'the radius of the briquet. This is a more generalized expression of the
law of squares which has been previously discussed? and will become useful later.

NUMERICAL ANAT.YSIS AND SOLUTTONS

Before proceeding with the numerical analyses, it is necessary to establish
the values of the parameters needed. These parameters are for briguets of Pittsburgh
Seam coal and product char.

The thermal conductivity measured as a function of temperature for briquets
is reported in the companion paper. The specific heat for briquets was obtained frcm
the additive equation for the componentsthus,
= 0.115 C

+ 0.250 C...- + 0.635¢C

cbriq. piteh ° coal char*

where the numbers correspond to the weight fraction of the briguet components.

The specific heats of coal and char were taken from measurements given in
the companion paper. The specific heat of pitch was taken from Hyman and Kays.
These data were adequate to cover the range from room temperature to 500°C. Above
500°C, it was assumed that the briquet was carbonized and the data of Terres4 for
char and coke was used.
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Graphical representations.of the specific neat and thermal conductivity
as functions of temperature were reduced to algebraic expressions primarily for
purposes of machine computation. The graphs were fitted to polynomial equations
by a standard least-squares sub-routine used in the IBM 650 Digital Computer. The
analytical expressions were found to be

C(T) = 2.14:107 % + 6.19x1074T + 1.40x107%T% + 4.36x107°T3 + 2.61x107+31*
(%)

for the specific heat of briquets and
kK(T) = 2.7hx10"% + 5.28x107%T + 4.57x107°%T2 + 3.85x1079T3 + 4.91x10~ 13T+ (5)

for the thermal conductivity of briquets. T is expressed in °C.

The coefficients and exponents were stored in the computer memory section.
The appropriate values of C(T) and k(T) could be determined by the machine whenever
needed in the overall computations.

The measured density of raw briguets is 0.8 gm/cma. It was assumed not to
change during carbonization. This assumption is acceptable since siarinkage compen-
sates approximately for the loss in weight {volatilization) during carbonization.

Evaluation of the film coefficients is also explained in the companion
paper. Values of 20 and 50 Btu/hr £t2 F° were assigned for the computations on
solids heating, to bracket expected values for heat transfer from fluidized solids
to briquets. For the gas film heat transfer co&ff1c1ent, G.5 Btu/hr £t2 F° was
employed in the calculation of the heating rate of two-inch br 1que+s by not flue zas.
This value derives from correlations by Gamson® et al. and by Wilke® et al. arnd
corresponds to a flow rate of 375 lbs. gas/ft2 hr. Tnis is consistent with a
physical situation in which a 15-ft. high shock heating zone, containing briquets,
is injected with 2200°F flue gas and in which the briquet residence time is 80
minutes.

The problem of ‘the rate of heating of briquets can be solved by application
of numerical methods of analysis similar to the step methods descrited by Ingerscll’.
In a generalized problem as complex as the one encountered here, hand calculations
would become prohibitively long and tedious. Only the speed of modern computing
machines ellows one to consider attempting such numerical solutions. Machire com-
puting time for a single set of conditions, a single heating case, was an hour and
e half.

Initial attempts with the Digital Computer to solve the general numerical
problem by applying "relaxation" operations to the step method’ proved impractical.
Programming the machine to make judiciocus predictions of temperature changes for
small time intervals was difficult and it reguired too much time in working through
many erroneous guesses before striking upon ones sufficiently correct. Therefore,
a "guess-free" step method was developed to translate the numerical procedure into
a form more suitable for machine computations.’

To facilitate numerical solution of this problem, the physical process of
heat transfer is artificially resolved into two distinct, sequential processes ~
first, isothermal- flow of heat from one section of matter to another for a short
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time, &nd second, a resultant change in temperature of the section based upon its
heat balance during the isothermal period. This artifice is most helpful in re-
ducing the heat transfer problem into simple first order difference equations that -
are easily translated into the basic language of digitel computation. In reality,
the flow of heat and change of temperature are not sequentigl, as pictured here,
but occur simultaneously, so that our solution of the problem is an approximate
one, though of very close approximation. The numericel solution approaches the
rigorous one as the increments of time and space that enter the computations are
made smaller for if the increments become infinitesimals, the solution.would be a
true calculus integration of the differential equations. The use of an electronic
digital computer, with its extremely rapid computation permits computation of a
set of equations for a great number of very small time and space increments; thus,
our solution is very nearly rigorous.

P

T

B e

Definitions of symbolic terms used in the following calculations and
discussions appear in the Appendix. 4

In this approximation method, a briquet is considered as being made up of
ten concentric spherical layers having initial temperatures of ;T;, 1T *** 1Ti0. -
The briguet is heated by hot gas of initial temperature ;Ts. For the duration of -
a short time interval, At, these temperatures are assumed constant while heat con-
duction proceeds, the driving force being differences between ;Tg, T3 » v, Tio.
The heat transferred is given by

% - LT = g ) at . (6)7

91 = Anx/z 12_ ¢

. ‘z(ﬂ”"'l * % L {

for the transfer from gas to the first layer, and by '
_ﬂ(.??)a;(ﬂ?“."’cu)dt For =] 70 '

Boonr = arx (7)-

,

4
for the transfer from layer to layer. The balance of heat left in i'th layer at
the end of a time interval is

S S AT 8o rs : (8)
which upon substitution of equations (6) and (7) leads to
8g, =~ %, . . (9)

for the gas since it can only lose heat. For the first layer, the heat balance is -

As' = 80,/ - Z.,,_ = (% ~7)at _ A[ﬁ;!a ({. % }At
arn/fr L AN (10)
A(T)x, — ha, :
ag, = 6,(% ~7) — 8,(\T-T)

where by definition

at _ HA(E)a: st
Y 7/ S ard B2 L% (1)
k@m)a, R for Czloee 10, 1

For the remaining layers, the residual heat in each layer is

48 = B (T = %) — Be (T = Tem) W
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Equations (9) through (12) now give the balance of heat lost by the gas and gained
by each layer during the arbitrary short time interval, At. Now, the temperatures
9f the gas and layers mre sllowed to change by virtue of the heat lost or gained
so that

§ 1580 = ~-Mm,C, (t o "o )

N (13)
jand A = e (T - T-)

i fo= ™ Qe (14)
;8Eilimination of As‘ from equations (9) and (13) and defining Ag = MoCo yields

\; A(T-%) = B (T~7T) (15)
%iimination of‘dx:from equations (12) and (14) and defining Ay = mjc (yTy) ylelds

\‘ A;‘ Cz.TZ ’17:' ) = B"-/ (:7?—/ "17¢.-') - B (:7? - IT(.'-fl) (16)

’

Since the ,T values are known from chosen initial conditions the oT's are the only
Pnknowns involved in equations (15) and (16), both of which can be re-arranged to
Fhe form,

} A e = B,,'., e~ —(Bc'-l *& —';4"),7:- B Teyy
?

which is completely general if it is remembered that B.ﬂ does not exist when i = o
and that Bp has & different form than all the other By values (see equation (11)).
Thus, the temperature of the gas, and of each layer in the briquet, at the end of
the first time interval, are computed directly from equation (17). These end
temperatures, (oTj), then become the initial temperatures, (yTi), for the next time
1nterval and the computations are repeated to determine the temperatures at the
Fnd of the second interval. Iteration of this procedure, for many time intervals,
'in the computer yields the temperature profile of the gas and the layers of the
briguet as a function of time. Ten-second time intervals were used in computations
for 2 and 3-inch briquets and one-second intervals for the l-inch briguet.

"

) Eight briquet heating cases were solved directly on the computer, covering
wariations of the following parameters, initial temperature of the heating medium,
imass ratio of heating medium to briguets, film coefficient, and the briguet radius.
The law of squares, mentioned earlier, can be used to apply the results to different
'size spheres by adjusting the value of h to maintein hrg = constant. The cases
studied are outlined in Table I.

(17)

{ The first four cases, involving high initial temperatures and a low value

.

of h describe shock heating with hot gas. The specific heat and molecular weight

Bf the heating medium in these cases was chosen to correspond to that of flue gas.

)
{

The other cases in Table I describe carbonization of briquets with hot

fluidized solids, such as char.
"

) The temperature distribution patterns solved for the eight programmed

ceses are shown in Figures 1 through 8. Figures 1 through 4 show the distribution
dbtained for shock heating with hot gas. Figures 5 through 8 show the distribution
for the cases where a fluidized solid heat carrier is used for shock heating. These
{igures illustrate immediately the heating times involved in carbonization of dif-
ferent size briquets under various conditions.

\
'

[P
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The time scale in each case is given for either a 1, 2 or 3-inch briquet g
as noted in the particular figure. The conversion factor to convert the time scale
to other briquet sizes by the law of squares is also noted on each figure,

The expected qualitative trends are clearly in evidence upon close ex-
amination of these figures. A faster rate of heating is observed, other things
being equal, when 1) the shock heating temperature is increased, 2) the film
coefficient becomes larger and 3) the briguets become smaller.

/
Some of these trends can be demonstrated more quantitatively by combining
the salient features for several cases on individual plots. Figure 9, for example,
shows the effect of briquet size on the rate of rise of the briquet center tempera-
ture with various values of h. The law of squares states that the rate of tempera-.
ture rise is inversely proportional to the square of briquet radius when hrg is
constant. If h is held constant, the rate here does not decrease quite &s rapidly.,
The rate, in this case, decreases roughly as the 1.75 power of the briquet radius.
It is clear, that as h becomes very large, that the law of squares will again be-
come valid. A very large value of h corresponds to the case in which the surface
temperature is held equal to that of the heating medium. Conversely, as h becomes
very small the temperature within the briquet will tend to become uniform at all
points and the rate of temperature rise becomes inversely proportional to the first
power of the briquet radius. :

The effect of the value of the heat transfer coefficient on the rate of
temperature rise of the surface and center temperatures for the case of a two-inch .
briquet may be seen in Figure 9. As the value of h increases beyond 50 Btu/hr £t2F
the rate of temperature rise tends to become independent of h. '

The effect of the film coefficient on the time required for the briquet
center to reach a given temperature is i1llustrated in Figure 10. The time required
to reach temperature again becomes independent of h for large values. ,

Some experiments were conducted to observe the temperature rise at the
briquet center for comparison with the theoretical behavior., The experiments were
arranged so that the results could be compared with Cases IV through VIII where
char was used as the heating medium. These computed cases were set up with a
decreasing temperature of the char from an initial value of 1350°F to a final
equilibrium temperature of 1110°F. The above temperature pattern (set up as repre-
sentative of a continuous process) could not be conveniently reproduced in the
laboratory.

The experiments were, therefore, conducted at a uniform 1200°F in the 8"
fluidized sand bath. A thermocouple was inserted into the center of the briquet
which was plunged into the sand bath and the temperature history was continuously
recorded.,

Measurements of this kind were made with 1", 2" and 3" diameter spherical
briquets. The linear fluidizing velocity of the sand bath was maintained constant
at 0.26 fps for 1 and 2-inch briquets. In order to check -the effect of linear
velocity a second and higher velocity of 0.45 fps was also employed for the 2-inch .
briquets. Since no effect of fluidizing velocity was found in this range, three-
inch briquets were measured only at 0.45 fps.

The experimental measurements are compared with the calculated rate of
temperature rise in Figure 9 for all three briquet sizes. The curves shown are
the calculated curves for different values of h as- parameter.
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It should be remembered here that the work reported in the previous paper
for aluminum spheres indicates that the correct value of h is in the neighborhood
of 30 Btu/hr rt2.

It is seen that in all cases the rate of temperature rise initially is
greater than the calculated figures. This phenomenon is -undoubiedly mainly due to
a conduction thermocouple error. This was shown by the following experiment. The
exposed extrusions of a thermocouple injected into the center of a 2" briquet was
heated electrically to 1100°F. Another unheated couple was inserted also to the
briguet center at a 90° angle to the former one. It was found that the heated
thermocouple would read as much as l0O°F above the unnheated couple. This much
thermocouple error is sufficient to bring about agreement between the lower tempera-
ture experimental points and a calculated curve expected for an h of 30 for 2"
briquets, as can be seen from Figure 9.

As the temperature of the briquet rises the thermocouple error naturally
would diminish quite rapidly both because of the smaller temperature differential
and the increase in thermal conductivity of the briquet material.

The lowest value of h available from the calculations for the 1" sphere
is 40. Extrapolation by the aid of the curve shown in Figure 10 “o an a value of
30 shows that quite good agreement exists between theory and experiment after
allowing for the initial thermocouple error.

It is also noted in the case of the two-inch briquet, that the effect of
fluidizing velocity on the experimental rate of temperature rise is negligidle. It
is seen likewise, that good agreement Detween theory and experiment is obiained
after the temperature rises above 300°C by assigning a lower than predicted value
of h of the order of 20. ’

The agreement at higher temperatures becomes rather poor in the case of
the three-inch briquet since one must assign a value below 13 to h to obtain agree-
ment in this case.

The explanation of this higher temperature discrepancy is thought o lie
in the retarding effect of volatile matter release on the penetration of heat through
the surface of the briquet; i.e., effectively on the value of h. This =ffect was
neglected in the calculations because of the added complexity it would aave intro-
duced. It should be noted, however, that the rate of volatile matter release per
unit of briquet surface increases proportionately to the briquet radius, making it
more serious for the larger briquets.

EMPIRICAL CORRELATIONS FOR HEATING RATES

It is desirable, if possible, to have available a simplified correlation
encompassing the calculated results. If such a correlation can be derived it would
simplify extrapolation to cases that were not directly considered and the appli-
cation of the calculated rate of heating to many design problems.

A correlation was developed to fit the four cases, V through VIII, con-
sidered for solids heated briquets. These cases correspond, for a two-inch spherical
briquet, to a range of values for h of 20 to 75 Btu/hr ft2 F°.

The correlation is based on the use of the empirical equation

4Tk (7 —7) as)
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T is approximately the mean briquet temperature and Ty is the temperature of the
fluidized solids medium. T is exactly defined by the equation

T=T + 9/¢ (19)

EG is ‘the initial briquet temperature, Q is the amount of heat absorbed by the
briquet and C is the mean specific heat of the briquet over the whole carboni-
zation range. T would be exactly equal to the mean briquet temperature if the
specific heat of the briquet were independent of temperature, which it is not.

It is clear that equation (18) in view of equation (19) can also be
written as follows

dg¢ . K CT,-T)
dt

(20)
This equation is obviously fallacious since the exact equation is
49 _ 4T ER (T, ~T) (21)

dT
Where T; is the temperature of surface of the briquet.

If equation (20) is valid, it can only mean that the increase in the
thermal conductivity of the briquet with temperature, is such that T follows, for-
tuituously, the relationship

—

T‘=7}“¢(73“77) (22)

The test for equation (18) is shown graphicelly in Figure 1l where the log (Tg -~ T)
is plotted against time. The points shown are derived from the computed results of
Cases V through VIII. 1In the particular cases studied here, heat balance consider-
ations give rise to the relationship

T, ~T =T, + £73 —1.23T 2

To is the initial temperature of the heating medium in degrees centigrade. The

slope of the straight lines shown in Figure 1l are equal to K of equation (18)-
multiplied by 1.23.

It is clear that the correlation holds with adequate accuracy as noted by
the linearity of the plots. The calculated slopes K'(= 1.23 K) are given for the
different h values on the graph.

It now remains, to complete the correlatibn, to account for the variation
of K with h and with briquet radius r. The variation with h, at constant r of one
inch, is adequately expressed by the empirical equation

K= a. A . (2k)
|+ 64K

where a = .00834, b = .0369, the time is in minutes and h has units of Btu/hr £t2 F°.

The transposition of equation (24) to other briquet sizes is carried out

readily by the law of squares. The final correlation is given below where r is in
feet and t in minutes.

dr _ 6?31(10‘7-:_@/_"'_,“.)
Jt (ff'é 443z (T T) (25)

This equatlon fits the computer calculations shown in Figure 11 with an accurscy
of 5%.
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THERMAL STRESSES

Thermal stresses can arise during the coking operation as a result of the
temperature distribution produced within the briquet combined with either a con-
traction or expansion of the briquet material. To provide a better understanding
of the nature of the thermal stresses existing within the briquet, a brief dila-
tometer study was made of the thermal expansion and contraction characterlsulﬂs of
the briquet material.

The dilatometer used is-simply an electrically heated vessel about 1 cm
I.D. containing a 2 cm high sample. The sample supports a rod which is counter-
balanced by a small weight attached to a string which presses over a pulley. The
pulley is fitted with an indicating needle whose displacement can be calibrated in
terms of linear expansion or contraction of the sample. Using a slow rate of heating,
about 3 to 5 F° per minute, the sample is assumed to be at the same temperature as
the container, and at essentially uniform temperature throughout.

The dilatometer studies were made on samples of briquets of material from
Plttsburgh Seam coal, particularly from two of our West Virginia mines, the arkwright
and the Moundsville mines.

The results of two slow heating runs on material derived from Arkwright
coal appear in Figure 12. 1In one case the semple was cut from a raw briquet and in
the other case, loose mix (not briquetted) was used. The briquet sample contracted
sharply at nominally 400 and 800°F, with an overall linear shrinkage of 9% upon
celcination to 1500°F and subsequent cooling. The loose mix did not show as much
shrinkage. This is probably & reflection of the less intimate contact of the
particular ingredients in the mix. The coal and pitch may become coked as separate
particles in the mix whereas they envelop -or penetrate the char in the briguet
meking it one solid body upon coking.

Figure 13 shows the negative thermal expansion of a briquet sample of
meterial from Moundsville coal. It had an overall shrinkage of 13.5% and exhibited

_an abrupt contraction at about 700 to 800°F as in the above Case...

Figure l4 shows the results of a run which is an attempt to simulate shock
heating. The sample and container were set into the furnace at 1500°F which im-
mediately dropped to ca. 1000°F, which is the shock heating temperature wanted. The

furnace was maintained at this temperature for 20 minutes at which time the center

of the sample was nearly at the same temperature as the wall (1000°F). The tem-
perature was then raised to 1500°F. In this case the sharp contraction at about
800°F seen in Figure 1 was not evident, probably because the whole sample was not
at that temperature at any one time.

It was hoped that use could be made of the above data with exact methods
that are available for calculation of the thermal stresses developed within an
isotropic and elastic body upon heating or cooling. The thermal stresses are a
function of the temperature distribution within the body, the shape of the body,
the coefficient of thermal expansion ef , the modulus of elasticity E and Poissons
number 7 .

The tangential stress d% at a radial posltion r of a sphere of radius ro
is given by the following expression due to Timosherko® B

of_ = -‘%-——- f‘r‘/(;J/r *-L fT’//Z‘/,t —T] (26)
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The expression for the case of a hollow sphere with an inner radius a and an outer
. radius b is given by Timoshenko® as follows

» : 3
_ 2a&E | 22%+a 2 1 fT- 2/, 1 ]
% =T 2(4%-a’03 mride 4 zz3) " -4 (27)

The use of these expressions to calculate the exact magnitude of the
stresses exdsting in briquets during coking is not possible. The main difficulty
is that we are dealing with a material that is not homogeneous and that is changing

in chemical and physical structure with time and temperature. Likewise, the physical !
parameters & , E, and %" are not known exactly. In fact, the above data show there

is no constant &¢ .

The briguets actually undergo shrinkage rather than expansion as the tem-
perature rises due to the above mentioned physical changes. If we permit ourselves
a rough approximation of the dilatometer results shown in Figure 24, the shrinkage
may then be treated as linear with the temperature. Under such condttions the
Timoshenko equation can be employed to calculate relative thermal stresses by

‘treating the factor (OLE/I-V) as an unknown parameter for different coking con-
ditions, but which is assumed to be constant. -

The briquet mix remains in a plastic condition due to softening of the
piteh and coal until a rigid coke bond is formed. Therefore, thermal stresses can
only be set up within the rigid portion of the briquet, while the inner plastic
region undergoes relaxation of any imposed stresses by flow into the rigid shell.

The problem can therefore be handled by application of equation (27) for the case
-of a hollow sphere.

The application of this method requires that a more or less arbiltrary
decision be made relative to the temperature at which plasticity of the mix dis-
appears. It has been assumed in what follows that the mix becomes rigid at 800°F.
This may be in some error, but definition of the solidification temperature is not
too important, however, since we are merely concerned with relative stresses.

The method adopted therefore was to compute the relative thermal stress
over the coked portion of the briquet, i.e., over the shell where the temperature
was 800°F and higher as a function of time, coking conditions and briquet size.
For simplicity, the calculations were restricted to computing the tangential stress
at the surface of the briquet only. Und.er these conditions, it can be shown that
equation (27) reduces to

- E 2
”2._"2;«'1/_2. fTJ JJ "éT'] (28)

where ¢ ='afb and y = rfo. The computed temperature distribution patterns given

in Figures 1 -tirough 8 were employed with this equation to obtain the relative
stress results discussed below.

The application of the Timoshenko equation to the calculation of thermal
stresses can be readily criticized since the equations apply to an elastic body of
constant chemical structure which is not the case here. It is clear, however, that
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in any case the thermal stresses are greater the sharper the temperature gradients
within the body. The Timoshenko equations merely provides a convenient framework

upon which to make a semi-quantitative evaluation of relative thermal gradients for
different heating patternus.

To establish a background of comparison for detérmining which relative
stresses can be expected to exceed the fracturing limits, a successful regime that
has been worked out experimentally for shock carbonization of briquets without
fracturing follows. Intact and non-deformed two-inch formcoke has been precduced
by shock heating in a fluidized sand bath, provided that the sand temperature was
within the range of 900 to 1150°F. The proper regime for hot gas formcoking is
difficult, if not nearly impossible, to investigate on a laboratory scale.

The calculated relative thermal stress in 2-inch briquets heated with gas
is shown as a function of the initial gas temperature in Figure 15. In all cases
the equilibrium temperature was maintained neer l00Q°F by selection of the quantity
of gas. The maximum thermal stress increases as expeCued with initizl gas tempera-
ture, but at a relatively low rate.

The thermal stress for char heated briquets as a function of briguet size,
time and film coefficient is shown in Figure 15. The equilibrium temperature in
all cases was constant at 1100°F. It is noted that the thermsal stress is of the
same order, or higher, than in the gas.cases even where 2600°F gas was used. One
may conclude, at least tentatively, from this that two-inch briquets may bve suc-
cessfully coked without fracturing even when 2600°F gas is used.

The other relationships in Figure 16 show the anticipated increase in
thermal stress with increasing briquet size using a fixed value of h. The major
increase in maximum stress is between the one and two-inch size with a relatively
small increase between two and three inches. This complies with experimental
findings, that 1" briquets survive the successful regime established for 2" briquets.

Experimentally, it is difficult to produce fracture-free 3" carbonized
brlquets by shock heating in fluidized sand. The slight increase in thermal stress
in going from 2 to 3" briquets, as shown in Figure 16, must be critical.

Certain qualitative conclusions are signified by these results. It is
readily seen from equation (28) that if the temperature distribution within a
briquet is ldentical with respect to the relative radius 'y that the thermal stress

'should be identical and independent of briquet size. The law of squares states

that the temperature distribution versus y will go through exactly the same se-
quence vhen plotted agalnst the reduced time scale t/rg2 if hro is consteant. Since
the non-dependence of stress upon briquet size is not observed either experimentally
or from the computed results (Figure 16) it can only be concluded that h does not
decrease inversely with r. Actually, it is felt that h decresmses less rapidly,

and therefore, the thermal stress does increase with size.
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Temperatures of the briquet layers at the end of a specifisd

time intervali. -

Time interval in seconds.,

Quantity of heat transferred during a2 time interval
the i layer to the i + 1 layer or Ffrom fluid mediun
first layer in the briquet if i = o.

Radius in general.

Thickness of a briquet layer.

Radius of the solid spherical briquet.

Surface area of briquet.

d snlids at the

£rom

.o

the
TS

Effective heat transfer area for transfer from the i-1 to

the i layer. It is given by ag = 4Wri_y r;.

Density of briquet material, assumed constant for tae

computer problem.

Mass of briquet layer, taken as (&i @ Ar).

Thermal conductivity of triquet material, a function of

temperature.

Specific heat of briquet material, a function of temperature.

Fiim heat transfer coefficient for transfer from gas or

fluidized sclids to the triguet.
Number of layers in the briguet.
k/;ﬁc, the thermal diffusivity, Alsc used for expan

Mass ratio of heating medium/briquet.

Nusselt Number = hrg

sivity.
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- aCt/roz.
- Roots of equation, Ny = 1 - My cot Mp.
- Mean Briquet Temperature.

- Initial Briquet Temperature.

symbols identified as used.
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FIGURE H

CORRELATION OF RATE OF HEATING OF BRIQUETS
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[
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FIGURE 2
THERMAL CONTRACTION OF ARKWRISHT BRIQUET
AND MiX, SLOW HEATINS

+2

4
)

[
»

_..BRIGUET COOLING _ *

i
@
Y

I
S

[+] 200 400 800 800 Lo ] 1200 1400 1600
TEMPERATURE, *F



PERCENT EXPANSION

PERCENT EXPANSION
L ' . ¢ ] +
<3 ] [ » »N (-3 »~

«110-

FIGURE 13

THERMAL CONTRACTION OF MOUNDSVILLE BRIQUET.
SLOW HEATING

FIGURE |4

THERMAL CONTRACTION OF ARKWRIGHT BRIQUET,
SHOCK HEATING
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FIGURE 19

RELATIVE THERMAL STRESS IN GAS HEATED
2-INCH BRIQUET AS A FUNCTION OF TIME AND
T IMITIAL GAS TEMPERATURE
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FIGURE 16
RELATIVE THERMAL STRESS IN CHAR HEATED BRIQUETS
AS A FUNCTION OF TIME, BRIQUET SIZE AND B
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