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INTRODUCTION 

An assessment of the hazards of a new l iquid fuel  requires an estimate of 
i t s  l iquid burning rate (i.e., l i nea r  regression rate of the Liquid surface) during 
s p i l l  f i r ea  in open air. We best-known w r k  on this subject is t h a t  of Blinov and 
Khudiakov (1) who reported on flames of several hydrocarbon blends contained i n  
shallow trays. 
that the burning rate above large pools is determined by the rate of radiat ive feed- 
back of the flame's heat of combustion to  the pool of l iquid.  The important Fmplica- 
t ion of t h i s  rate-controll ing process is t ha t  burning rate should increase asymptoti- 
ca l ly  to a maximum value at very large pool diameter; t h i s  maximua~ r a t e  should not be 
much greater than with pools of moderate dimension, i.e., 1-2 meter diameter. 

Their findings, as reviewed and interpreted by Hottel (3) ,  suggest 

Some support w a s  given t o  the picture  advanced by Blinov and Khudialwv and 
by Hottel i n  an earlier paper from this Laboratory (2). 
additional corroborative evidence based on da ta  for  methanol, l iquefied n a t u r a l  gas, 
l iquid hydrogen, and tvo amine fuels  as w e l l  as four typical  hydrocarbons. The paper 
also describes the e f f e c t s  of fue l  temperature and of wind on burning rate, discusses 
the special  problem of cryogenic fuels,  and suggests t ha t  burning rate may be 
predicted with some confidence from the heats  of vaporization and combustion of the 
fuel.  

The present paper gives 

ExpEBpIENllBL 

Materials 

The l iquid hydrogen was preconverted parahydrogen, supplied by t h e  con- 
tractor.* Unsymmetrical dimethyl hydrazine (UDWH) used vas specif icat ion grade 
"Dimazine" supplied,by the Chlor-Alkali Division of Food Machinery and Chemical 
Corporation; and diethylenetriamine (DETA) bas obtained as a technical grade product 
from the Carbide and Carbon Chemicals Company. Liquefied natural  gas (LNG) was pre- 
pared by t o t a l  condensation of the loca l  pipeline product, boiling at -150' C., cf .  
methane, b.p. -161.5. C. Reagent grade hexane and xylene, purif ied absolute 
methanol, and technical grade benzene were used as received from the Fisher Scien- 
t i f i c  Company and c.p. butane as obtained from the Matheson Company, Inc. 

Procedures 

Our burning r a t e  tests followed generally the experimental conditions of 
Blinov and ghudiakov (1, 3). 
1 - 2 4  cm. diameter and about 8 cm. depth, paxticular a t t en t ion  being given t o  flush- 
f i l l i n g  of t he  trays at the  smallest diameters. 

*See kknovledgment. 

The noncryogenic fuels  were burned i n  trays of 

Liquid hydrogen was burned i n  
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Almost a l l  tests were con- 
s t a in l e s s  steel dewars of 7-33 cm. diameter and LNG in insulated t rays  o r  within a 
diked area vhich had been precooled with l iqu id  nitrogen. 
ducted out-of-doors i n  winds of l e s s  than 1 f.p.s. average velocity. 

Radiation from the flames w a s  measured v i t h  one o r  -re Eppley thenutspiles 

TM typical  records appecu: in F&ure 1. 

The t o t a l  thermal 

( C a p 2  windows) spaced zround the flames i n  a horizontal plane and f a r  enough from the 
flames f a r  the inverse square law to apply. 
The radiant  pover of a flame vas calculated on the assumptiou tha t  radiation is 
emitted with spherical  symmetry from the center  of the fuel  tray. 
pover vas computed an the  assumption t h a t  combustion i s  complete, neglecting soot 
formation, w i t h  C02, N2, and E$ vapor as products. 

Burning r a t e s  vere calculated by assuming that the  instantaneous radiat ion 
level  is proportional t o  the burning rate a t  the same point in time and t ha t  the 
area under the radiat ion record is  proportional t o  the t o t a l  volume of fue l  consumed. 
Alternative methods were used €or spec i f ic  purposes: 
vas  monitored v i t h  a thermocouple and burning r a t e  computed from t h e  required.. addi- 
t ion  r a t e  of fue l  to  maintain the  leve l  constant. 
insoluble fue ls  vere poured onto vater and burnedmupletely; several  depths of fuel, 
for  example 1, 2 ,  and 5 cm., vere  burned t o  comprise each burning r a t e  determination. 
(3) Small t rays  of up to  38 cm. diameter were supported op a balance sa t ha t  fuel  
consumption vas established in te rmi t ten t ly  by weight loss. It w a s  found t h a t  cowec- 
t ion  currents  vere suf f ic ien t ly  d i f f e ren t  around a small elevated tray tha t  burning 
r a t e s  were generally higher than those obtained w i t h  the  tray on a broad flat surface. 

(1) The l iqu id  surface level  

(2) Measured volumes of vater- 

RESULTS AND OBSERVATIONS 

Burning Rate as a Function of Time 

Typical behavior on igni t ion  is fo r  the burn ing  rate to accelerate  through 
a short  "burning-in" period. 
reach  its steady value a t  about t he  t i m e  vhen bubbles appeared on the  l iqu id  surface. 
T h i s  induction period was observed a t  al l  t ray  diameters and is i l l u s t r a t ed  in 
Figure 2; methanol, UDME, and the cryogenic fue ls  Hz and LNG provided exceptions b y  
the absence of an induction period. 

In  the case of benzene, the burning r a t e  vas found to 

Methanol and benzene flames at the  same pool diameter (7.5 an.) and the 
same i n i t i a l  vapor pressure (40 nrm.Hg) were snuffed out  after shor t  i n t e rva l s  of 
burning as shorn i n  Table 1; heat  required for  fue l  vaporization, column 3, vas 
estimated from the veight loss during burning; heat  retained i n  the l iquid,  column 4, 
vas estimated from the average temperature rise; t o t a l  heat  t ransfer  from flame to 
liquid, column 5, is almost time-independent, and by chance circumstance of the  tray 
diameter, almost equal for  the tM fuels .  The induction period for  benzene occurs 
during the f i r s t  two minutes v h i l e  much of the transferred heat  is being s tored i n  
the l iquid phase. Burning r a t e  is constant a f t e r  the "burn-in." 

Burning Rate as Function of Fuel Temperature 

Several fuels  vere burned i n  s m a l l  brine-jacketed traps for  BIL estimate of 
the temperature coeff ic ient  of burning rate. R e s u l t s  with e thyl  ether, absolute . 
methanol, and 95 percent ethanol are given i n  Figure 3. 
form closely to  our expectation t h a t  burning rate should vary inversely w i t h  the 
fue l ' s  sensible heat of vaporization. 

The cor re la t ing  Lines con- 

Burning Rate as Function of Pool Diameter  
. and Wind Velocity 

i 

Steady burning rates i n  the near-absence of d u d  a t  various diameters of 
fue l  t ray are plot ted in Figure 4 ,  The curves represent the empirical expression 

), ' 
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(1) 

wherein v i s  the l inear  burning rate and d the t ray  diameter. 
fue l  (solid c i r c l e s )  were  used to  evaluate the constants K and vm, which are l i s t e d  i n  
Table 2, Figure 5 presents da t a  spec i f ica l ly  for  benzene, the points near the curve 
result ing from experiments under nearly wind-free conditions. The dashed l i n e  repre- 
sents the extrapolated burning rate, v,, and the points near t h i s  l i n e  were obtained 
by burning benzene i n  various natural  and a r t i f i c i a l  winds ranging up t o  4 meters per 
second. 

Tvo points for each 

Values of v, for  the nine fue ls  studied are given as ordinates in Figure 6. 
The correlating l i n e  has the form 

sensible heat of vaporization, & cm.hin. (2) 1 net  heat of combustion,- 

[ v.,, - 0.0076 
No correction was made for incompleteness of combustion which was par t icu lar ly  
evident i n  the soot-forming benzene flames. 

Radiation and Absorption Measurements 

The rad ia t ive  outputs of some gaseous d i f fus ion  flames are compared i n  
Table 3 with the t o t a l  heats of combustion involved. It was demonstrated a t  several  
burner diameters t h a t  the apparent percentage of heat radiated to  the surroundings was 
independent of the flow r a t e  of fue l  supplied. The e f f ec t  of wind was a l w a y s  t o  re- 
duce the percentage of heat dissipated radiatively.  

Xadiative outputs a t  various diameters of liquid-supported flames are given 
The percentage of  heat radiated i n  the l a rges t  sca le  test i s  combined in Table 4. 

v i t h  burning rate values to  give the radiant output per un i t  a rea  of the l iquid sur-  
face shown i n  the f i n a l  column of T a b l e  2. 
diminished somewhat through absorption of the flame radiations by atmospheric water. 
Some representative percentages of absorption a t  various lengths of op t ica l  path by 
water vapor, by fue l  vapor, and by the l iquid fuel are given i n  Table 5. 

Hazards a r i s ing  from t h i s  radiation may be 

Special Behavior of Cryopenic Fuels 

Unconverted l iqu id  hydrogen waa poured i n t o  a deep pyrex dewar (7.0 cm. 
diameter X 45 cm. deep), the bottom 15 cm. of &ich was f i l l e d  with paraf f in  a t  2 5 O  C .  
The time-dependent vaporization r a t e  i s  i l l u s t r a t ed  i n  Figure 7. The f i r s t  20 seconds 
represents the t ransfer  period during which spattering occurred and the  vaporization 
r a t e  vas somewhat uncertain. Thereafter, vaporization seemed t o  follow a curve given 

-1 /2  
by 

( 3) v ( l inear  regression r a t e )  = K t  

wherein K has a value consistent v i t h  the solution of the  one-dimensional, time- 
dependent, heat t ransfer  problem (5) ,  and zero time represents the  point a t  which the 
paraf f in  surface was apparently cooled t o  l iqu id  hydrogen temperature. Similar re- 
s u l t s  were obtained on s p i l l i n g  l iqu id  nitrogen onto warm insu la t ing  materials within 
deep vessels. 
insulated trays the time-dependent 'ltail'l corresponding to  equation 3 could not be 
reproduced; as i l l u s t r a t e d  i n  Figure 8 the vaporization rate typica l ly  decays to  a 
nearly time-independent value which i s  c lear ly  affected by air cur ren ts  across the 
tray. 

However, on sp i l lage  of the cryogenic l iqu ids  N2 and LNG in to  shallow 

The r e su l t  of ign i t ing  a cryogenic fue l  during the f i r s t  seconds a f t e r  
sp i l l age  i s  shovn i n  the upper curve (LNG) of Figure 1. 
cated by a pip on the rad ia t ion  record labeled A. 
later and the duration of the rad ia t ive  f lash  waq no more than 4 seconds. 

S t a r t  o f  sp i l l i ng  i s  indi-  
Ignition was accomplished 7 seconds 

The shape 
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of the radiation record during the f i r s t  30 seconds was never found to resemble the 
vaporization rate curves of Figures 7 and 8. The lower curve of Figure 1 shows the 
comparable f lash  on ign i t ing  benzene folloved by a typical "burdng-in" period of 
30-40 seconds encountered w i t h  l iqu id  hydrocarbons a t  room temperature. 

The burning rates reported here for l iquid hydrogen are l e s s  r e l i ab le  than 

The l iqu id  was burned i n  s t a in l e s s  steel dewars of three 
for the conventional fue l s  s ince  evaporative losses become very high when one attempts 
to  f lu sh - f i l l  a container. 
diameters with fuel consumption as shown i n  Figure 9. Burning r a t e s  were obtained 
from the i n i t i a l  slopes of t he  curves i n  Figure 9 corrected for  the  hea t  losses of the 
dewars. The dashed l i n e  of  the figure shovs th i s  heat loss t o  be about equal t o  the 
terminal burning r a t e  as the l iqu id  level approached the bottom of  the dewar. Burning 
r a t e s  i n  such small diameter vessels,  i.e., 7, 15, and 33 cm. diameter, are typically 
very much affected by such casual crossvinds as occurred during these par t icu lar  
tests. 

Other Observations Relative to Bate Measurements 

Figures 10 and 11 i l l u s t r a t e  phenomena vhich Yere observed i n  large diameter 
flames and which could be simulated by benzene flames above small pyrex dishes. The 
underside views of Figure 10 show the d is t r ibu t ion  of soot through the vapor zone 
between flame and l iqu id  surface. 
r d i a l  d r a f t  w i t h  a chimney as i n  Figure lob. 
ethylene flames i n  open air  (4). 
tha t  of a large flame i n  qu ie t  a i r ;  the burning ra te ,  p lo t ted  i n  Figure 5 ,  is c o r  
parable to vm. Figure 1 O c  shovs the flame dislocated from the rim of the t ray  by an 
excessive draf t .  
winds of about 3-4 m./sec., although the c r i t i c a l  ve loc i ty  was sens i t ive  to  the con- 
figuration of the  apparatus. The burning r a t e  typically decreases a t  t h i s  point of 
incipient blowoff, but i f  premixing of fuel. vapor and air occurs a t  a point of flame 
s t ab i l i za t ion  then a much h o t t e r  flame develops (note the bright zone i n  Figure 1Oc) 
and burning r a t e s  can exceed v,. 

The density of soot is increased by increasing the 
Soot has a l so  been obsened  under 

The shape of the flame i n  10b is qui te  similar to 

With rectangular t rays  t h i s  tearing of the flame occurred with 

I n  Figure 10 the  p y r e  dish  is  set in to  the bench top so t ha t  the rim of 
the dish i s  1/2-inch above the surrounding f l a t  surface. 
ized a t  the rim. In Figure 11 the rim of the dish is mounted f lush  with the surround- 
ing surface and one observes t h e  "creeping" of the flame as heavy fue l  vapors diffuse 
outward along the surface against  the rad ia l  inflow of air .  This phenomenon vas 
noted par t icu lar ly  with butane flames and brought about the discontinuance of mea- 
surements above 76 cm. diameter. Burning rates and radiation leve ls  increased 
appreciably (>20 percent) during each period of t h i s  flame ins tab i l i ty .  

The flame is then s tab i l -  

It w a s  confirmed t h a t  l inear  burning r a t e s  increase a t  tray diameters below 
5-10 cm., such r a t e  values being omitted from Figure 4 to  avoid confusion. Flames a t  
very s m a l l  diameter are simple laminar d i f fus ion  flames and heat t ransfer  to the 
l iqu id  i s  demonstrably an edge e f f ec t  of no in t e re s t  i n  large-scale experiments. For  
example, methanol burning i n  a 7.5 cm. diameter ,  water-jacketed brass  tray was con- 
sumed a t  a r a t e  of 3.8 cc./min.; when a concentric inner t ray  of 4.4 cm. diameter vas 
added, t h i s  inner tray being l e f t  empty, there was no change i n  the  consumption ra te  
of fue l ;  when the inner t r ay  had a diameter of 5.4 cm., the  volumetric r a t e  f e l l  t o  
3.1 cc./min. Thus, the."edge" of i n t e re s t  i n  small methanol flames is an annulus of 
s l i g h t l y  grea te r  width than 1 a. 
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DISCUSSION 

The Dominance of Radiative Beat  Transfer 

Ram their s tudies  of hydrocarbon flames, Blinov and Khudiakov proposed that 
burning rates are controlled by heat f l ux  from the hot zone t o  the l iqu id  surface. 
This concept vas put in to  semi-quantitative form by B a t t e l  i n  his rev iev  of the 
Russian paper (3). 

4 TF TB - 4 -kd - .  -- k l  -+kZ(TF-TB) + d~ P(l  - e 
sd2/4 d 

) (4) 

(Heat f l ux  * conductive + convective + rad ia t ive  components) 

wherein TF I s  the flame temperature, TB the  l iqu id  surface temperature, presumably the 
boiling point, k l  and k2 are conductive and convective coef f ic ien ts ,  respectively, 
d the pool diameter, u the Stefan-BoltPnan constant, P a flame shape fac tor  fo r  radia- 
t ion  t o  the l iquid,  and k an opacity coeff ic ient .  
4 by the.volumetric heat of vaporization, w, and neglecting conductive and 
convective terms, one obtains 

On dividing both sides  of equation 

Conductive heat t ransfer  becomes negl igible  at la rge  diameters by v i r tue  of 
being an edge e f fec t .  I f  one assumes that the Bl inw and Wudiakov burning r a t e s  at 
s m a l l  diameter are completely conduction-controlled, then by equation 4 the contribu- 
t ion  of conduction i s  less than our experimental uncertainty at all diameters repre- 
sented i n  Figure 4. It is  not 80 easy to  dispose of convective t ransfer ,  especial ly  
w i t h  the  slover-burning flames. 
in te r face  betveen l iquid and vapor phases i n  both methanol and benzene flames. The 
presence of soot par t ic les  above the benzene pool as showu i n  Figure 10 is also sug- 
gest ive of convection. The strong absorption of flame rad ia t ion  by methanol vapor, 
Table 5 ,  d ic t a t e s  t ha t  the flame stand very c lose  t o  the l iqu id  surface which again 
favors convection as the  heat  t ransfer  mode. On the other  hand, we can ru le  out  
convection w i t h  the faster-burning butane and hydrogen flames s ince there  vas no 
sharp rise i n  temperature as a thermocouple emerged from the l iqu id  phase in to  the 
vapor zone. Assuming for  the sake of fur ther  discussion t h a t  heat t ransfer  i n  la rge  
trays is exclusively radiat ive,  equation 1 becomes the empirical equivalent of equa- 
t ion  5 .  On t h i s  basis, the empirical constant K of equation l may be ident i f ied  v i t h  
Hottel 'e opacity coeff ic ient  k, a d  our extrapolated burning ra te ,  vm, i s  given by 

W e  have noted a steep temperature gradient at the 

l?o precise  explanation is offered for  the simple cor re la t ion  of da t a  given 
by equation 2 and Figure 6 .  
The reciprocal of i s  the fract ion of the flame's hea t  t ha t  must be fed back 
t o  the  l iqu id  t o  maintain a steady rate of vaporization. 
the t a l l e r  the flame must be to l i m i t  the  eff ic iency of heat  t ransfer ;  but the height  
of a diffusion flame, other things being equal, is  determined by the rate of fue l  
feed, F.e., the burning rate. The l i nea r i ty  of the curve i n  Figure 6 ,  and the  small 
degree of scatter of data, were unexpected. 

Qualitatively, the relat ionship i s  easy to understand. 

The smaller t h i s  f ract ion,  
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Since equation 2 is expected to h w e  some prac t ica l  significance Ln predict- 
ing the r e l a t i v e  hazards of  fuels ,  it is important t o  list its limitations.  
involved only single-component fue ls  ( the LNG used vas more than 90 percent methane) 
burning i n  unvitiated air, under unusually calm atmospheric conditions and at  one 
a m s p h e r e  pressure. 
atmospheric humidity must be minor. It is part icular ly  important to note t h a t  cw 
fuel studied vas a monopropellant and that decomposition flames could hardly conform 
t o  the heat  t ransfer  picture  described above. 

The data 

W e  know from experknents with methanol t h a t  the e f f e c t  of  

The Effect  of Wind on Burning Bate  

The effect  of minor winds (Hgure 5 )  may be ra t ional ized ou the b a s i s  o f  the 
I f  the e f f e c t  of the wfnd is o d y  to m e  three variables Tg, P, and k i n  equation 5 .  

the flame around, then Tp and P could reasonably remain unchanged; but as the  flame's 
hot zone is ruff led the opacity i s  v i s i b l y  increased and the result of Figure 5 could 
a r i s e  from such an increase of  k, the  opacity coefficient,  t h a t  e - a  becomes negligi- 
bly small. 
ident ical .  

The e f fec ts  of wind and of large pool diameter should therefore b e  

Some caution is necessary in  applying t h i s  concept to prac t ica l  problems, 
I n  the case of an idealized s p i l l  i n  which the  l iquid surface is flash with the sur- 
rounding t e r r a i n  and there are 110 veloc i ty  gradients i n  the moving air, one w u l d  ex- 
pect v, t o  be the highest a t ta inable  burning rate. A t  higher wind ve loc i t ies  than . 
those of Figure 5 the flame begins to  blov off.  
behind a bluff body (consider f o r  example a half-empty fuel  tank) one may no longer 
be dealing with a diffusion flame but w i t h  a turbulent premixed flame in which Tp is 
hundreds of degrees higher than i n  diffusion flaws. W e  have observed burning rates 
equal to M c e  v, under some such circumstances and lmow of no upper l i m i t .  

However i f  the fue l  is contained 

Special Problems w i t h  Cryogenic Fuels 

The d a t a  f o r  l iquid hydrogen and for  l iquefied natural  gas vere made con- 
s i s t e n t  w i t h  o ther  d a t a  in Figures 4 and 6 by e i t h e r  minimizing o r  correcting for any 
heat  flow from the warm surroundings. H o m e r ,  i n  actual  s p i l l s  with igni t ion occur- 
ring a t  o r  shor t ly  a f t e r  spi l lage,  hea t  conducted from the ground may be  the dominant 
factor  i n  the fuel ' s  r a t e  of vaporizatiou. For example, when hydrogen uas sp i l led  
onto waxm paraff in ,  Figure 7 ,  about 7 an. of the l iquid depth vas vaporized in 
chilling the paraffin surface; thereaf ter ,  the liquid regression rate st i l l  remained 
f a s t e r  f o r  severa l  minutes than the  liwid burning rate obtained VLth insulated pools 
(Figure 9).  W i t h  typical s o i l s ,  the  thermal d i f fus iv i ty  is higher than with paraff in  
and a l iqu id  depth of 20 cm. can vel1 be diss ipated w i t h i n  the first minute after 
sp i l lage  (5). 

W e  have no r a d i d o n  records for  the i n i t i a l  f lash  on s p i l l i n g  a l a rge  
depth of l iqu id  hydrogen in to  tux ign i t ion  source. 
to LNG and Figure 1 is representative.  
comparable t o  the radiat ion expected from fuel  vaporization curves. 
suppose t h a t  a l a rge  f rac t ion  of the  f u e l  vapor escapes unignited. 

The d a t a  that we do have per ta ias  
The area under the initial spike is n w e r  

We can only 

C O a n u S I O N S  

Due to the dependence of burning r a t e  on radiat ive heat t ransfer  from flame 
to l iquid,  the burning r a t e  approaches a constant value with increasing pool diameter. 
This coustant burning r a t e  is  proportional t o  the r a t i o  of the net heat  of combustioa 
to the sensible  heat of  vaporization. 
f i r e s  to approach the large diameter value unless the flame is disrupted. The radia- 
t i v e  f lux to t h e  environment is about 20-40 percent of the heat of combustion. 

Winds raise the burning rates of unshielded 
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Table 1.--&at transferred to liquid phase during 
' -  short periods of burning. 

-J. 4. hat, 
burned burned C a l .  C d .  C a l .  

Minutes Grama 

Methanol, 5O C.. f n i t i a l  

1 3.8 1100 250 1400 
2 7.5 2300 500 2800 

4 15.0 4500 9 00 5400 
3 11.3 3400 700 4100 

5 18 ,o 5400 1050 6500 

Benzene, 9. C.. fnitial 

1 4.0 500 750 1300 
2 11 1400 1250 2700 

5 41 5000 1800 6800 

3 21 2600 1550 4200 
4 31 3800 1700 5500 

'fable 2.--S ,y of computed values bearing on 
rediative hazards of f i res .  

Thermal output 
K ,  vmD ' per unit liqufa surface, 

. kcal./cm.Zsec. 
Fuel cm. cm./sec. Total Radiated 

-1 

Hexane 
Butane 
Benzene 
Xylene 
Methanol 
UDMH 
Hydrogen 
LNG 

0.019 
,027 
.026 
.012 
.046 
.025 

(0  -07) 
.030 

0.73 
.79 
.60 

.17 

.38 
(1.4) 

.66 

s a  

5.1 2;o 

5.1 i .a 
5.1 1.4 

5 .o - 
.64 .ll 

2.2 .60 
(2.8) (0  7) 
3.2 .74 
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Table 3.--Badiation by gaseous diffusion flames. 

Radiative oubut Burner 
diameter, 100 X - 

.Fuel cm. Thermal 
~~ -. output 

Hydrogen 0 -51 
.91 

1.9 
4.1 
8.4 
20.3 
40.6 

9.5 
9 .l 
9.7 
11.1 
15.6 
15.4 
16.9 

Butane 0.51 21.5 
.91 25.3 

1.9 28.6 
4.1 28.5 
8.4 . 29.1 
20.3 28.0 
40.6 29.9 

Methane 0.51 10.3- 
.9 1 11.6 

1.9 16 .O 
4.1 16.1 
8.4 14.7 

N a t u r a l  gas (95XCH3 20.3 19.2 
40.6 23.2 

\ 



Table 4,--Radiation by Iiquid-8upported diffusion flmes. 

Radiative output V e s s e l  
diameter, 

Fuel Em. Thermal output 

BydJmen 33 25 

Butane 

. .  L E  

Methanol 

Benzene 

30 
46 
76 

38 
76 

2.5 
5 
15 
122 

5 
46 
76 

122 

20 
21 
n 
P 
23 

l.2 
14 
17 
17 

38 
35 
35 
36 

Table 5.--Perc&tage of absorption of f l a m e  radiations 
in c e l l s  with CaF2 Vindova. 

Absorbing medium, path length. temperature 
Liquid fuel,  Fuel vapor, Stem, 

0.3 an., 8.9 a., 8.9 an., 
We1 30. C. rooo c. 165. C.  

Methanol 
Hydrogen 
m a  
H e x a n e  
Benzene 

100 

> 98 
7 1  . 
62 

- 27* 13 
0 33 

43 18 - < 6  
11 - 

*38 percent absorbed over 18.4 cm, path. 

! 
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-ELAPSEDTIME. minutes 

Figure l.--Radiation Records on Burning about One Gallon (3640 cc.) 
of LNG and of Benzol i n  15-inch Diameter Tray. 
LNG poured into warm tray at point A. 

TIME. minutes 
Figure 2,--Budng Rates of F i v e  Liquid Fuels i n  a 3-inch Pyrex Vessel (3.5-inch 

for UDMK). Vapot Pressure 40 nun.& at Initial Liquid Temperature. 
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0 Methanol 
X Ethanol (95m 

I I t I 1 I 
w) -40 -20 0 20 40- 

TEMPERATURE, "C 

Figure 3.--Effect of Fuel Temperature ou Steady 
Burning Rates i n  7.5 an. D i a m e t e r  
Brine-Jacketed Burner .  
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50 100 150 ~ . _  
POOL OIAMEER. crn. 
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Figure 4.--Dependence of Liquid B u r n i n g  Rate on Pool Diameter. 
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Figure 5.--Effect of Wind on Burning Rate of Benzene. 

AHc (net)/ AH" (sens.) 

Figure 6.--Relation Between Liquid Burning Rates 
at Large Pool Diameter and 
Thermochemical Properties of the Fuels. 
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Film and nucleate boiling limited 

Theoretical (conduction limtted) 

-20 20 40 60 80 loo 120 140 160 
ELAPSED TIME. sec. 

Figure 7 .--Rate of Vaporization of Liquid Hydrogen from Paraffin in 
a 2.8-inch Dewar. Initial liquid depth 6 . 7  inches. 

Evaporation rate = i70 t-! gm N*/min. 

or 0.04 t-Z in. LNG/min. 
1 

EIAPSED TIME FROM POURING min. 

Figure 8.--Evaporation of Liquid Nitrogen after Spillage into a 
W a r m  15-inch Diameter Tray. 
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Figure ll.--Creeping Flame on Lipless Dish (bel-)- 
Compared vfth Noncreeping Flame OP 
Dish vfth l/P-Lnch Lip. 
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