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One of the major obstacles t o  the design of a reactor f o r  
di rect  conversion of coal t o  high heating value gas by 
destructive hydrogenation a t  high pressure (hydrogasification) 
has been the lack of Wormation 'on the r a t e  and course of 
the reactions during the i n i t i a l  period of rapid conversion 
of the more reactive coal constituents. Kinetic studies have 
generally been made w i t h  highly devolatilized chars and carbons 
to  avoid the problem of changes i n  feed composition during 
heatup. Where the ra tes  of  formation of low molecular w e i g h t  
hydrocarbons from reactive coals and low-temperature chars 
have been measured, experimental conditions did not permit 
both rapid heatup and s h o r t  product gas residence times t o  
minimize side and secondary reactions. 

The primary variables affecting the rate of hydrogasifi- 
cation a re  c o a l  reactivity,  temperature, pressure and feed 
gas composition. The coal react ivi ty , ln  turn,varies w i t h  the 
i n i t i a l  coal properties, the extent of conversion, the length 
of time a t  reaction conditions and the severity of the reaction 
conditions. In previous studies,signFTicant diffusional 
resistances have not been encountered (15,16), although they 
might become important a t  higher temperatures,or w i t h  more 
reactive feedstocks. 

. In  work a t  the Ins t i tu te ,  the major objective has been 
the determination of the conditions f o r  the meet production 
of  a high heating value gas in a pract ical  continuous reactor 
system. 
in batch reactor tests (&),and has recently been confirmed 
in a countercurrent moving-bed continuous reactor. Earl ier  
results obtained w i t h  low-temperature bitumjllous coal char 
in a fluid-bed reactor a t  1400' t o  150O0F. and 500 t o  2000 
p.s.i.g. (10) did not fu l ly  a t t a i n  the desired objective of 
30 t o  50$ char  conversion t o  a gas of goo B.t.u. per SCF , 
(standard cubic foot a t  60°F., 30 inches of mercury and 
saturated w i t h  water vapor). To o b t a i n  high conversions of 
hydrogen and coal t o  a high-methane content gas, long coal 
and hydrogen residence times and l o w  hydrogen t o  coal feed 
ra t ios  were used. These conditions mke i t  d i f f i c u l t  t o  
interpret  the ra te  data, since the effects  of equilibrium 
hindrance cannot be accurately defined because of lack of 
thermodynamic a c t i v i t y  data f o r  coal and char a t  levels 
of  conversion. 

The f e a s i b i l i t y  of this approach had been indicated 
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The U. S. aureau of ! m e s  (7-9)  employed a reactor tube, 
5/16 inch i n  inslde diameter, whZc5 vas heated by passing an 
e lec t r ic  current through it. Pressures up t o  6000 g.s. i .g.  
and a nominal operating temperature of 80oOc. (1472 F.) w e r e  
investigated. m u g  the 2-minute heatup period, and afterward, 
hydrogen was passed through the tube a t  a sufficiently hlgh 
r a t e  that  gas residence times were only 4 f e w  seconds. Sub- 
stantial yields of liquids were obtained during the relat ively 

heatup period, so that the ra tes  of gasification observed 
a t  lo? OOOC. were f o r  the l e s s  reactiva, residual material. The 
liquids yields decreased with decreases In hydrogen rate as 
a resu l t  of the increase i n  residence time. For example, an 
increase in gas residence time ,from 6 t o  30 seconds resulted 
in a decrease in l i q u i d  hydrocarbons from 26 t o  4.5 w e i g h t  $ 
(moisture-, ash-free b a s i s ) ,  of a high-volatFILe bituminous 
coal. 

w e r e  formed in the fluid-bed tests a t  the Institute (10) .  
these tes t s ,  low-temperature bituminous coal char or I_Tgnite 
(-60, +325 sieve size,  U. S. Standard) were fed cocurrently 
with hydrogen t o  the  hot f luidized bed, resul t ing in rapid 
heatup. However, product gas residence times were on the order 
of one minute, so  the absence of l iquid products could have 
been the resul t  of secondary vapor-phase reactions. 

In the work described herein, tests were conducted in 
which both coal heatup and product gas residence time were of‘ 
the order of a f ew seconds. 
products were formed and methane w a s  the major gaseous hydro- 
carbon produced, w i t h  only trace quantit ies of higher paraffins, 
olefins and aromatics being formed. Some carbon oxides and 
nitrogen were a l s o  evolved during the init ial  phases of the 
reaction. 

In contras t , negligible quantit ies of l iquid hydrocarbons 
In 

No measurable amounts of l iqu id  

A f low diagram o f  the reaction s g s t e m  is  shown in Fig. 1. 
The -16, &O sieve size (U. 3. Standard) coal charges were 
fed Fn single batches (usually 5 o r  1 0  grams) f’rom a hopper 
mounted on top of the reactor.  A t  zero time, a fXLl-openlng, 
air-operated b a l l  valve, connecthg&he reactor and feed 
hopper, was opened and the coal charge was dropped into the 
reactor. A syntran vibrator was mounted on the hopper t o  aid 
In solids feeding. A pressure-equalization line connecting 
the top of the hopper and the reactor i n l e t  kept both vessels 
a t  the same pressure. 

Feed gases were preheated t o  the desired operating temp- 
erature w i t h i n  the reactor. 
cooled c o i l ,  a l iquids knockout pot, a high-pressure f i l t e r  
and a pressure-reducing back-pressure regulator, before 
sampling, metering and manitoring. 

Gas inlet  flow rates were controlled manually and were 
measured by an o r i f i c e  meter. 
desired operating pressure i n  an  e1ec;rically-heated stainless 
s t e e l  c o i l  by feeding water from a weigh tank w i t h  a metering 
Pump. 

Exit gases passed through a water- 

Steam vas generated a t  the 

/ 



The reactor barrel was constructed of N-155 super alloy 
and was designed f o r  operation a t  a maximum pressure of 1500 
p.s.1.g. a t  a maxhum temperature of l7OO0F. A complete 
description of the reactor has been given elsewhere (XI.), 
along w i t h  design detai ls  concerning the use of externally- 
heated rea,ctors a t  high temperatures and ressures. The 

diameter and 60 inches in inside length. 
thermowell, 3/8 inch in outside diameter, was mounted i n  the 
center of the bottom closure arid extended 58 inches in to  the 
Peactor. 
in inside diameter and containing a 1/2-inch outside diameter 
thermowell sleeve, was installed in the reactor t o  contain 
the coal charge and provide f o r  complete recovery of  the coal 
charge a f t e r  each t e s t .  
w i t h  sufficient alundum pel le ts  t o  position the coal charge 
in the center of the third heating zone from the top. 

controlled e lec t r ica l  resistance heating elements, each 12 
inches long. Reactor pressures were controlled a t  the desired 
values by means of a back-pressure regulator and were con- 
tinuously recorded along w i t h  orif'ice pressures. 

The double-ended reactor contained an Autoclave Engineers 
self-seallng (modifTed Bridpan) closure a t  each end. The 
closures were rated f o r  1400OF. operqtion a t  1500 p.3.i.g. 
This high-temperature service was f a c i l i t a t e d  by use of e i ther  
16-25-6 o r  Inconel alloy seal  rings. 
molybdenum disulfide, applied i n  aerosol form t o  produce a 
thin boundary layer coating, was used ofi a l l  c losure  threads 
and on the seal  rings. 

reactor was 2 inches in inside diameter, f inches l n  Outside 
A n  Inconel X 

A removable, stainless s t e e l  inser t ,  1-5/8 inches 

The sottom of  the insert was f i l l e d  

Reactor temperatures were maintained by four individually- 

A boundary lubricant of 

Feed gas mixtures, which were prepared by mixing during 
compression, were stored a t  pressures up t o  3000 p . s . i .  . 
Commercially available grades of electrolgt ic  hydrogen 799.8% 
pure), nitrogen (99.6% pure) , helium (99.99% pure) and 
technical grade methane (95.0% pure) were used. All feed gases, 
except steam, contained approximately 2 mole % helium tracer 
for exi t  gas f l o w  r a t e  measurement. 

a wet t e s t  meter and the ex i t  gases were also metered w i t h  
this meter as  a check on the helium tracer method Tor e x i t  
gas f low ra te  measurement. In t e s t s  w i t h  pure steam feed, 
helium sweep gas was used t o  purge, from the ex i t  gas system, 
the small volumes of permanent gases formed. The e x i t  gas 
specific gravity was monitored continuously w i t h  a recording 
gravitometer as an a i d  in selecting times for e x i t  gas sampling. 
A sampling manifold was instal led i n  the ex i t  gas l u e ,  
upstream of the metering and monitoring system to allow rapid 
sampling a t  small time intervals.  
by mass spectrometer. The combined nitrogen and carbon monoxide 

The feed gas or i f ice  was calibrated before each run w i t h  

Gas analyses were performed 
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content of the e x i t  gas ,detemhed by mass spectrometer, less 
nitrogen introduced In the feed gas, waa assumed t o  be carbon 
monoxide, except in selected t e s t s  where-carbon monoxide was 
detergned by infrared spectrophotometer. 

anthracite, a North Dalsota l ign i te ,  a Pittsburgh Seam 
bituminous coal  and a low-temperature bLtuminous coa l  char. 
The char was prepared from bittrminous coal from the Montour 
No. 10 Mine by a fluidized-bed pretreatment process of the 
Cansolidation Coal Co. Analyses of these feeds a re  shown 
i n  Table 1. 

o r  less. 
operating temperature. Then gas flow, a t  the desired rate ,  
was star ted through the reactor. 
was then adjusted so that a l l  temperatures w i t h i n  the reac tor  
remained constant. When the system was s tabi l ized completely, 
the run was in i t i a t ed  by opening the valve between the feed 
hopper and reactor. 

A t  typical conditions of 1500 p.s.i.g. , 1700°F. and a 
hydrogen f low r a t e  of 100 SCF per hour, the f i r s t  hydrogaslfi- 
cation products appeared in the exLt gas a t  the sampling 
m o l d  in approximately 10 seconds. DurFng the Fni t ia l  
period of high conversion ra te ,  samples were ,Wen  a t  time 
intervals  a s  short as 5 secmds t o  d e l h e a t e  the exact course 
of the reaction. Temperatures a t  the center of the coal charge, 
a t  a p o h t  6 inches above the charge and a t  the bottom of 
the inser t  were recorded continwusly by means of a high-speed 
temperature recorder whlch  recorded each temperature a t  
approximately 3- second Intervals. 

When the reaction r a t e  had reached a value too small to  
be measured accurately a t  the h i g h  gas r a t e s  employed (usually 
a f t e r  about 600 seconds), the run was stopped. The e lec t r ic  
heaters were turned off and the reactant gases were purged 
f’rom the reactor w i t h  nitrogen. The reactor was kept f i l l e d  
w i t h  nitrogen u n t i l  the temperature had reached a low enough 
value to  allaw re t r i eva l  of the coa l  residue. 

The f o u r  coals Investigated were a medium v o l a t i l i t y  

Most runs were conducted f o r  a t o t a l  time of  15 mirrutes 

The heat input t o  the reactor 

The reactor was f i rs t  heated up t o  the desired 

, 

REWJIPS 

EKploratory Tests 

t e s t s  were conducted a t  t h e  base conditions of 1000 o r  1500 
p.s.1.g. and 1700°F., w i t h  a hydrogen f l o w  ra te  of 100 SCF 
Per hour. It was necessary t o  select  sample weights which 
gave small temperature changes and low concentrations o f  
methane i n  the e x i t  gas, without impairing analytical  accuracy. 

Before the t e s t  program was Fnitiated, several exploratory 



Coal 
Type 
Source 

Table 1 .-COAL ANALYSES 

Bituminous Coal Char 
Low Temperature 

Consolidation Coal Co. 
(Montour No. 10 Mine) 

Part ic le  Size, 
U.S. Standard Sieve -16, +2O 

Ultimate Analpis, 
Wt $ (dry basis) 

Carbon 78.3 
Hydrogen 3.46 
Nitrogen and 

Sulflcr 1.01 
Ash 

(by difference 10.03 

To t a l  
Proximate Analysis, w t  $ 

Moisture 1.7 
Volatlle kbtter 17  e.3 
Fixed Carbon 73.9 
Ash 

Total 

-40, +50 

79.5 
3.46 

10.12 
0.91 
6.01 

100.00 

2.3 
17.9 
73.9 

& 
Coal Bituminous Coal 

P i t t sburgh  Seam 
Consolidation Coal Co. 

me 
Source 

(Montour No. 4 Mine) 
Par t ic le  Size, 
U.3. Standard Sieve 

Ultimate Analysis, 
w t  $ (dry basis) 

Carbon 
Hydrogen 
Nitrogen and 

S- 
Ash 

(by ddfferen? 

To ta l  

Moisture 
Volatile Matter 
Fked  Carbon 
A s h  

Proximate Analysis, w t  $ 

-16, +20 

75.9 
5.01 

8.99 A 
1.1 

33-5 

Anthracite 
Medium Volat i l i ty  

Anthracite Experiment 
Station, 

U. S. Bureau of  U e s  

-16, +20 

83.3 
2.47 

2.90 

,I;!; 

0.7 
5.7 

83.2 
10.4 
loo.0 

Ugni t e  
North Dakota 
Trmax- Traer CO . 
(Velva MFne) 

-16, -1-20 

65.4 
4.49 

23.21 

6.8 
41.2 
46.0 

6.0 
1oo.o 
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1 
With 50- and 20-paam samples of low-temperature bituminous 

coal char (-8, +16 sLeve s ize)  the maxirmun ex i t  gas methane 
content was too high and the temperature changes during the 
run were t o o  great t o  allow the assumption of Ciifferential 
reaction conditions. In tests with 10- and 5-gram samples 
of -16, +20 sieve s ize  low-temperature bituminous coal char, 
the exit .  s methane contents approached the desired levels,  

gaseous hydrocarbons per pound of carbon remainhg in bed per 

( 

and react  T on ra tes  (expressed as  pounds carbon converted t o  

hour) were similar. 

temperatures of 1700°F., two periods of high r a t e  were observed 
(Fig, 2 ) .  The second period of high r a t e ,  occurring a f t e r  
approximately 30% carbon gasification, was a r e su l t  of 
increases in the temperature of the char sample due t o  the 
Inabi l i ty  t o  dissipate the high heat of reaction to  the 
surroundings. This was substantiated by conducting a m t h e r  
t e s t  w i t h  a 3-gram sample weight. 
in ra t e  was obtained a t  carbon conversions above 30%. In 
t e s t s  w i t h  unpretreated coals,  and with bituminous coal char 
a t 1 3 0 0 9 .  and 1500°F., no second period of high r a t e  was 
ob served. 

the remainder of the test program. 
on the ra te  of  reaction could indicate the presence of 
significant dFffUsiona1 resistances. 
w i t h  10-gram s l e s  of -16, +20 and -40, 6 0  sieve s ize  
material l7ig.Y.  

mext of the ra te  curve f o r  the -40, +50 sieve s ize  material 
was probably due to  the slower feeding r a t e  of the more 
finelg divided material, o r  t o  an i n i t i a l  holdup in the coal 
feed hopper. 
it was believed tha t  these small differences were within the 
limits of experimental and analytical  accuracy. 

base conditions were selected f o r  the remainder of the tes t s ,  
unless otherwise noted: 

With low-temperature bitumFnous coal char a t  nominal run 

Here only a slight increase 

It was also necessary to  select  a coal pa r t i c l e  s i ze  f o r  
An effect  of par t ic le  s ize  

Tests w e r e  conducted 

These t e s t  resu l t s  indicate negligible 
effects  o h par t ic le  s i ze  on the reaction rate .  The displace- 

Based on duplicate t e s t s  t o  check reproducibility, 

From the resu l t s  of these exploratory tes t s ,  the following 

Temperature t 1700'F. 
Pressure: 1500 p.s.1.g. 
Sample weight : 5 and 10  grams 
Coal par t ic le  size: -16, +20 sieve s ize  
Feed g a s  flow ra te :  100 SCF per hour 

Tgpical results fo r  the four feeds used in this s t u d y  a re  given 
i n  Table 2. 
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Table 2.-TYPICAL TEST RESULTS OBTAINED AT 1700°F. AND 1500 P.S.I.G. 

10 

98.7 
0.06 

99.93 
0.01 

9:: 
-- 
-- 

Bslrsne 
Total l-m% 

_- Pate or Folmstlou or Oaaswus edmcarkm 

Tot41 Cdv&lm of Carton in ked, S 
Total CaFbcm Rscoveq, P 
Peed 
Time of Sampling, ssc. 
Teqmratum % 

Exlt Gaa Rate, SCF)&. 96.9 
Exit Gas Compoaltlon, =lo % 

A. + co 0.04 
co. 99.95 
Ea 0.01 

-- Carbon lb Ab. carbm id-hr 
-- 

14s 
Peed wdIvg;n late scF/hr. 97.1 

C& 
C1& 

5 ~pana or a t ~ o ~  c d .  -16,+20 0.3.3. S i  ve sits 
17:; 17c 17c 17: 1 4  17% 1% 
104.Y 104.3 104.3 104.3 104.3 104.3 104.2 
101.5 101.5 100.8 100.8 101.5 100.1 101.4 

0.51 0.89 0.61 0.49 0.12 0.04 0.03 

5.13 U.k 9.88 9.28 3.55 1.72 0.n 
0.04 0.02 0.02 0.01 -- -- -- 
g!% &:E 92: 96.;; 98.;; 99.1; 

**&&as& 

s SIWM or w i t e ,  -i6.+20 U.S.S. siem 31W. 
25 54 lo M 80 120 240 

100.1 97.6 95.2 98.3 97.1 97.0 97. 

0.56 1.82 1.91 1.02 0.08 0.05 0.04 

2.43 8.S 9.15 5.37 1.15 0.57 0 . S  
960% 8 O : Z  8::3 9% 98.G -99.3 99.58 

240 
1732 
104.1 
102.7 

0.04 

0.99 
0.01 

IUrJ35 
4.1 
56.6 

98.;; 
-- 

_- 
480 
1713 
97.6 
96.6 
0.06 

99.69 

Tim% 

0.25 -- 

0.1 U.6 39.7 41.7 24.8 5.2 2.6 1.7 1.1 -- 0.8  5.9 20.0 32.2 42.1 46.0 53.3 62.9 -- -- -- _- -- -- -_ _- _- 
5 ~pams of Medim Volatlllt, Aatbraolte, -16,+20 0 3 . 3 .  31eve 31m. 

16% 169'; P$ $ 17% 17% 1;;: 1% 1% 
97.3 97.3 97.3 97.3 97.2 97.0 
95.8 95.3 95.7 93.6 93.1 94.3 95.4 94.5 %:P 
0.10 0.29 0.24 0.20 0.17 0.07 0.04 0.03 0.03 
0.01 0.03 0.01 -- -- -- 
99.67 96.65 94.77 9z:g 91.G ?:if 98,:a 99.11 99.15 
0.22 3.01 5.47 5.25 0.86 0.82 

u)o 
172s 
103.6 
1W.B 

0.01 _- 
?:E -- 

TmG 
1.6 

71.0 
87.9 

600 
1714 

3:P 
0.04 

99.75 
0 . a  

-- 
-- 

xEa% 
0.9 

66.3 
82.3 

1% 
97.4 
96.1 

0.03 

99.52 
0.15 

_- 
_- _- _- 

5 ~rama or 
10 20 

96.4 94.9 
0.08 -- 
;E 3:: 

-- 0.03 
99.90 9 63 

-- 0.01 
0.01 L o  

-- o.oi 
0.01 0.01 -- _- 

l m % a  
0.2 15.5 -- 1.9 -- _- 

Iov-Temperatulp Bltw,iaous Coal Char,  -16.+20 U.S.3. Slam 31- 

98.2 98.2 98.2 98.2 98.2 98.2 98.2 98.2 
95.3 93.9 95.7 96.0 96.7 94.9 97.8 96.0 

25 54 60 
1720 1720 1717 $% i E  1% 1% 2;; 
0.98 0.95 
0.01 -- 
89.22 90.08 
9.77 8.95 
0.01 -- -- -- -- -- -- -- 
0.01 0.02 

m T o - o 7 m  
34 
5:2 :A:: -- _- 

0.08 0.05 

98.;; 99 -; 
1.20 o:?, 
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Effects of  Variables 

The ef fec t  of temperature and extent of conversion on 
the r a t e  of reaction of low-temperature bituminous coal char 
and hydrogen was measured i n  a series of tests conducted a t  
1500 p.s.i.g. and a t  1300°F., 1500'F. and 170O0F. (Fig. 4) . 
During the in i t ia l  phases, the reaction r a t e  w a s  not 
signFticantly affected by temperature i n  the range studied. 
onlg a f t e r  approximately 20% carbon gasification did the 
effects  of temperature become apparent. The rate constants 
f o r  the residual char would be expected t o  follow the pseudo- 
first-order relationship: 

I 

i 
where r = 

k =  
P =  

This 

ra te  of reaction i n  pounds of  carbon as methane 
equivalent per hour per pound of carbon in bed. 
Methane equivalent includes carbon in a l l  gaseous 
hydrocarbons produced. 
ra te  constant. 
hydrogen p a r t i a l  pressure In atmospheres. 

1 

expression has been shown by Blackwood (2 ) t o  be 

Birch (A) has 

applicable in the temperature range of 650' t o  87OUC. (1202' 
t o  1598OF.) f o r  the reaction of coconut char w i t h  excess 
hydrogen a t  pressures up t o  40 atmospheres. 
a lso applied it  successfully to  correlate data on the hydro- 
genation of the residual (aromatic) carbon portion of  
Australian brown coal w i t h  excess hydrogen in  a fluid-bed 
reactor for the temperature ran e from 750' t o  950'C. (1382' 
t o  1742OF. ) . Zielke and Gorin showed that, i n  the 
temperature range of 1500' t o  1700 F. and a t  1 t o  30 
atmospheres, with devolati l ized Disco bituminous coal char 
the apparent reaction order i s  2 a t  low pressures and 
approacnes 1 a t  high pressures. 

In Table  3 ,  pseudo-first-order hydrogasification r a t e  
constants for  these chars are compared w i t h  the values f o r  
low-temperature bituminous coal char a f t e r  25 t o  30% carbon 
conversion (Fig. 4 ) .  Agreement is quite good, except f o r  the 
acid-extracted, high-temperature coconut char. The rates 
f o r  th i s  specially-prepared low-reactivity material a r e  up 
t o  one order of magnitude lower, as would be expected. 

bed reactors of various types, except f o r  the data f o r  
Australianbrown coal, which were obtained in an integral  
fluid-bed reactor. However, methane concentrations i n  the 
product gases were low enough t o  mFnimize equilibrium 
hindrance effects. The data f o r  coconut char are based on 
the carbon m t i a l l y  present i n  the bed, but this is  not 
significant in view of the low conversions. 

A l l  of the above results were obtained i n  M f e r e n t i a l -  
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1 

b 
I 
I 

I 
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1 

Table 3.-COMPARISON OF RATE CONSTANTS OF VARIOUS INVESTIGATORS 

- Coal High-Temperature Brown Coal Disco Bit .  hw-Temp. 
Coconut Char C o a l  C h a r  B i t .  Coal 

Conversion Less than  10% More than 0-30s 25-30s 
Char Conversion 40% Carbon Carbon Carbon 

Char  

Conversian Gasification GasFfication 

Temperature, OF. 
k rate constant* 

2 x 10- 1300 - 1 x 10 -- 
1500 9 x 10-4 4 x 10-3 6-2 x 10-3 4 x 10-3 

1700 6 x 2 x lo-= 1 x 10- 3 x lo-= 

* For Birch, Zielke and Gorin and this study,k has units 
of lb. of C as CHq equiv./lb. C in bed-hr.-atm. HB 
part. press. For Blackwood, units are lb. of C as C& 
equiv./lb. C fed-hr.-atm. H2 part. press. 
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Fig. 5 further demonstrates the similari ty i n  hydro- 
gasification r a t e  constants of the residual portion of 
coals and chars with great ly  different i n i t i a l  properties. 
The r a t e  constants during the high-rate period a re  roughly 
proportional t o  the vola t i le  matter content of the feed, but 
a t  high conversion levels  they approach one another. It c m  
be seen that the resu l t s  obtained w i t h  5-gram samples of 
l ign i te  and anthracite could not be closely duplicated with 
10-gram samples, whereas with bituminous coal good agreement 
was obtained. The apparent ra te  constants with the larger 
samples were much higher f o r  l ign i te  a d  considerably lower 
f o r  anthracite. This i s  not believed t o  be primarily due t o  
lack of reproducibility. I 

The combined ef fec t  of  changes Fn t o t a l  and in hydrogen 
par t ia l  pressure a t  1500° and 1700'F. is shown i n  Figs. 6 and 
7. The separate effect ,  a t  1700°F., of a decrease i n  hydrogen 
par t ia l  pressure f rom 1500 t o  1000 p . s . i .  by the addition of 
nitrogen, i s  shown in Fig. 8. These results apparently 
reflect that ,  during the in-itial high-rate period, both 
pyrolysis and hydrogenolysis occur. Increases i n  hydrogen 
p a r t i a l  pressure would increase the r a t e  of  hydrogenolyais 
compared to  pyrolysis. Thus, an increase i n  t o t a l  pressure 
tended t o  broaden the range of the i n i t i a l  high-rate 
period. An increase in hydrogen partial pressure a t  constant 
t o t a l  pressure both broadened the ra te  curve, and increased 
i t s  peak, during the Fni t ia l  high-rate period. 

highly ex0 thermic residual char hydrogenolysis period was 
obscured a t  1700'F. by the large temperature increases, 
depending on sample weight. However, it can s t i l l  be observed 
qualitatively that  increases t o t a l  pressure as well as in 
hydrogen p a r t i a l  pressure gave the expected lncreases i n  
rate. 

With devolatilized Disco bituminous ccal char, ZieUre 
and Gorin showed that the effect  of methane par t ia l  pressure 
on hydrogasification r a t e  i s  simple equilibrium hindrance (15). 
However, the resu l t s  obtained with a partial pressure of 5 0 0  
p . s . i .  o f  nitrogen and with a par t ia l  pressure of 500 p.s.1. 

Fni t ia l  high-rate p e r i o d  (Fig. 87 
s t a n t i a l  equilibrium hindrance effect  during this period, Fn 
sp i te  of the large reduction in driving force f o r  the 
reaction C + 2% - Ci&, W a carbon a c t i v i t y  of 1 is 
assumed. On that basis, theequilibrium methane p a r t i a l  
pressure a t  1700°F. and 1500 p.s . i .  i s  only about 700 p . 3 . i .  
The absence of a hindrance effect  a t  low conversions is 
f'urther evidence of the much higher i n i t i a l  carbon ac t iv i ty .  
The effect  of 500 p . s . i .  methane par t ia l  pressure i n  the feed 
gas during the low-rate period could not be determined because 
the product gas rnetl%ne concefitration measurement was not 
accurate enough t o  obtain meanin- data. 
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The true effect  of hydrogen p a r t i a l  pressure during the 
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of  methane were not signif'icantl different during the 7 
This indicates no sub- 
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Course of Coal-€@drogen Reactions 

of coal-hydrogen reactions, a t  suff ic ient ly  high temperatures, 
pressures anc? residence times t o  give methane as  the major 
product, i s  i n  agreement w i t h  observed experimental resu l t s  
of t h i s  study. In somewhat modified form, this sequence is: 

A high-rate period comprising pyrolysis of the more 
reactive s t ructural  units such as  a l iphat ic  
hydrocarbon side chains and oxygenated functional 
groups, and hydrogenation and hydrogenolysis of 
the intermediate pyrolysis products. 
A low-rate period of direct  a t tack o f  hydrogen on the 
residual aromatic carbon structure.  

The descriptian by Birch and others (1) of the sequence 

1. 

2 .  

Evidence f o r  the two steps during the high-rate period can be 
found in the increase i n  organic l iquid products formation 
with decreases in pro&ct gas residence time observed by 
Hiteshue and others (I) a t  relat ively l o w  reaction temperatures 
encountered during heatup. Absence of substantial  organic 
liquid product yields would correspond t o  the completion of  
the vapor-phase hydrogenolysis reactions, which would then be 
the chemical rate-controlling step i n  methane formation during 
the i n i t i a l  high-rate period. Since, in th i s  study, there was 
no major e f fec t  on the high-rate period from temperature 
changes in the 1300° t o  1700°F. range a t  a pressme of 
1500 p.s . i .g . ,  a physical process mag have been controlling 
under these conditions of extremely rapid hydrogenolysis. 

Although no measurable l iquid hydrocarbon formation 
occurred, even a t  1300°F., as a resu l t  of rapid heatup o f  
the coal charge, the presence of  small amounts of CB- t o  
C4-aliphatic hydrocarbons during the high-rate period 
indicates the i n i t i a l  formation of higher molecular weight 
intermediates which have been converted t o  methane by hydro- 
genolysis (12-14) .  In this case, ethane would have t o  be 
present in q u a x i t i e s  exceeding the methane-ethane-hydrogen 
equilibrium values. In tests with bituminous coal char, 
ethane concentrations actually dld exceed equilibrium values 
a t  the peak of the high-rate period (Fig. 9 ) .  The formation 
of  small amounts of  benzene during the high-rate period i s  
f'urther evidence of the similari ty with hydrocarbon 
hydrogenolysis. 

A be t te r  picture of the sequence of coal-hydrogen 
reactions under coal hydrogasification conditions can be 
obtained from the changes Fn hydrogen dis t r ibut ion w i t h  
conversion of various feeds. The upper s e t  of plots  in 
Fig. 1 0  shows the r a t i o  of t o t a l  hydrogen in the e x i t  gas t o  
the t o t a l  hydrogen in the feed gas f o r  a ser ies  of tests 
conducted a t  1700'F. and 1500 p.s.i.g. The lower s e t  of 
curves in Fig. 10 shows the changes i n  gaseous feed hydrogen 
consumption w i t h  conversion, f o r  the same ser ies  of tes ts .  
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It can be seen that the l n i t i a l  'high rate period is 
characterized by donation o f  hydrogen from the coals and 
char , as w e l l  as by large consumption of feed hydrogen, 
indicating the occurrence o f  both pyrolysis and hydrogenolyais 
reactions. The maximum feed. hydrogen c,onsmption tends to  
occur a t  higher carbon gasif'ications than the maxirmun hydrogen 
evolution, in accordance with the sequential nature of the 
pyrolysis and hydrogenolysis reactions. The r a t e  of feed 
hydrogen consumption is  an excellent indication of feed 
reactivity,  except that w i t h  the low- temperature bituminous 
coal char, a second period of high consumption uccurs a s  a 
result of uncontrollable temperature increases. 

relatively l i t t l e  hydrogen and consumed a disproportionately 
large amount of gaseous feed hydrogen. This i s  due t o  the 
large amount of water formation which can be readily measured 
In flow reactors, but could not be determined experimentally 
In the present work. It should be noted that, a t  the high 
hydrogen p a r t i a l  pressures used in this study, the only other 
major path f o r  oxygen rejection is a s  carbon monoxide, since 
carbon dioxide formation i s  PractiCallY sqpressed. 

Ugnite,  because of its high oxygen content, donated 

Steam-mdrogen Coal Gasification 

mixtures and char ex is t s  f o r  temperatures of 1500° t o  1700'F. 
a t  hydrogen p a r t i a l  pressures below 30 atmospheres (a,s,g,l6). 
The addition of steam was found t o  substantially increase =e 
rate of methane formation a t  these low hydrogen p a r t i a l  
pressures. Ektrapolation t o  hydrogen p a r t i a l  pressures 
suff ic ient ly  high t o  give rates of methane formation which 
a r e  of pract ical  in te res t ,  indicates that the effect  of 
steam becomes less significant.  In the  present study, the 
rates of the steam-char and hydrogen-char reactions w i t h  an 
equimolal steam-hydrogen mFxture were measured a t  1700°F. and 
1500 p.s.1.g. The rates o f  these two reactions (measured by 
the rates of  evolution of  gaseous carbon oxides and gaseous 
hydrocarbons) are shown in Fig. ll as functions of  t o t a l  carbon 
gas i f ica t ion .  %-e results of the two t e s t s  conducted w i t h  
5- and 10-gram sample weights are in good agreement, and the 
second high-rate period ,charac t e r i s t i c  of the char-hydrogen 
tests a t  1700'F. ,is absent. This is probably due t o  smaller 
temperature changes, with both exothermic hydrogenatlon 
reactions and endothermic s team-carbon reactions occurring 
simultaneously. 

partial pressure, the char-hydrogen reaction proceeded much 
more rapidly than the char-steam reaction, especiallg a t  the 
higher conversions- However, from comparison w i t h  Figs, 7 
and 8, the r a t e  of char conversion t o  gaseous hydrocarbons 
was below the leve l  expected f o r  a feed gas hydrogen partial 
pressure of 750 p.s.F. Thus, the relat ively high ra tes  of 

mch kinetic information on the reaction of steam-hydrogen 

anlike much of  the e a r l i e r  work a t  re la t ive ly  l o w  hydrogen 
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carbon oxide formation a t  low conversion leve ls  may have been 
largely due t o  steam reforming, catalyzed by the reactor Walls, 
of a portion of the gaseous hydrocarbons produced. 
even if the t o t a l  gasification rate i s  considered 3n a 
comparison with char-hydrogen results, there i s  no FndlCatiOn 
of the acceleration of methane formation by steam addition 
which has been observed a t  lower hydrogen par t ia l  pressures. 

The rate of the steam-char reaction w i t h  an equimolal 
steam-helium mixture a t  1700°F. and 1500 p.s . i .g . ,  shown i n  
Fig. 1 2 ,  was much higher than in the previous test with a 
steam-hydrogen feed a t  equal steam part ia l  pressiire. 
the resu l t  of the well-established inhibi t ion of the steam- 
carbon reactions by hydrogen ( 6 ) .  
gaseous hydrocarbons were also formed i n i t i a l l y ,  probably 
largely by pyrolysis rather than by reaction of char with 
hydrogen formed in steam decomposition, or  d i r ec t  reaction of 
steam and char. This i s  supported by the f a c t  that more 
hydrogen was produced than could be accounted f o r  by carbon 
oxide-forming reactions. 

CONCLUSIONS 

However, 

1 

This i s  

Substantial quant i t ies  of 

GasFfication of  various coals with hydrogen and added 
steam a t  high temperatures and pressures, under conditions 
of very rapid coal heatup and product gas residence time of 
only a f e w  seconds, has confirmed the generally accepted model 
derived from data without as  detailed a definit ion of the 
c r i t i c a l  i n i t i a l  stages of conversion. During this i n i t i a l  
period, gaslf'ication rates are very rapid and the course of 
the methane-forming reactions is similar t o  that in  
hydrogenolysis of hydrocarbons. However, the r eac t iv i ty  of 
the pyrolysis intermediates formed d u r h g  the high-rate 
period appears t o  be much greater than tha t  of typ ica l  
petroleum hydrocarbons since no measureable l i qu id  products 
were obtained a t  temperatures a s  low as 1300°F., and methane 
was the predominant product. Materials as dif'ferent as 
lignite, bituminous coal, anthracite and low-temperatxre 
bituminous coal char behaved similiarly, except t ha t  i n i t i a l  
conversion rates increased roughly in proportion t o  their 
vo la t i le  matter content, and hydrogen consumption and carbon 
oxide formation w a s  affected by oxygen content. However, 
the conversion r a t e s  of the r e l a t ive ly  unreactive residues 
were approximately the same. A t  the high hydrogen partial 
pressures employed i n  this study, steam addition did not 
accelerate methane formation a s  observed Fn previous s tudies  
a t  re la t ive ly  low hydrogen p a r t i a l  pressures. The inhibi t ing 
e f fec t  of hydrogen, on reactions w i t h  steam which form 
carbon oxides, was observed for the i n i t i a l  high-rate period, 
as well as during the conversion of the residual char. 
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