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Carbon Dioxide Acceptor Gasification Process 

By: G. P. Curran, C. H. Rice and E. Gorin 

Research Division 
Consolidation Coal Company 

Library, Pennsylvania 

Introduction 

Production of both hydrogen r ich  and high BTU gas from coai  has been 
under study i n  the  Research Division of Consolidation Coal Company f o r  several  
years. There are a number of p a r t i a l l y  or  f u l l y  developed processes which are 
available f o r  t h i s  purpose. 
with na tura l  gas f o r  the foreseeable future. 

These are all too expensive t o  be competitive 

It is a fea ture  of most of t he  available processes t h a t  oqygen i s  
The high used t o  provide the  endothermic heat of the  gas i f ica t ion  process. 

cost  of oqygen i s  one of t h e  more significant. i tems which makes the  conventional 
processes uneconomic. 

It has thus become c l e a r  t ha t  elimination of oqygen i s  one of the 
The Cog acceptor prerequisites f o r  t he  development of an improved process. 

process i s  one which s a t i s f i e s  t h i s  general objective. This paper describes 
some steps which have been taken i n  the development of the process. The 
emphasis i s  on a discussion of the  properties of the acceptor as determined by 
the needs. 

Process Description 

The general p r inc ip le  of  the C02 acceptor process is  the use of a 
c i rcu la t ing  lime-bearing acceptor. 

The acceptor generates the hea t  required i n  the gas i f ica t ion  s t e p  of 
the process by the  reac t ion ,  

C a O  + Cog = CaC03 

!be absorption of carbon dioxide serves also t o  enrich the gas i n  hydrogen. 
More heat i s  thus evolved by i n t ens i f i ca t ion  of the two exothermic reactions,  

CO + H20 = C02 + H2 
C + 2 H 2 = C ! &  

It t h u s  becomes possible t o  supply all the  hea t  requirements of the  gasifica- 
t i on  process by use of a su i t ab le  acceptor. 
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The acceptor i s  regenerated by calcining i n  a separate s t e p  the 
The heat required i s  supplied calcium carbonate at a higher temperature. 

by burning the residual char from the gas i f ie r  with air. 

A number of v a r i a t ' o  s i n  the acceptor process have been described 
i n  a ser ies  of U. S .  patentstl?.  
i l l u s t r a t e d  i n  Figure 1. 
ser ies  of process s teps  shown f r o m  the devolat i l izer  t o  the regenerator. 

A typ ica l  flowsheet of the  process i s  
The char feed i s  passed sequentially through t h e  

The elements of the process flowsheet have 'been studied individually. 
The product yields  obtained i n  the devolat i l izat ion of low temperature chars 
produced from Pittsburgh Seem coals have been determined i n  a continuous 
10 lb/hr(2) f luidized bed unit. Gasification of char with s eam and oggen 
has been studied i n  a 200 lb/hr  f luidized p i l o t  scale unit(6f. A detai led 
s t u d y  has a l so  been made of basic  kinet ics  of the gasif icat ion reactions of 
char with pure hydrogen(*) and hydrogen-steam m i x t u r e ~ ( ~ , ~ r ~ ) .  

No operating data  are  available f o r  the integrated process as shown 
i n  Figure 1. 
however, given i n  Table I. 
operating conditions of the  process based on available data  on the kinet ics  
and thermodynamics of the individual reactions involved. 

A detai led heat and material balance around the  process is, 
These data  represent reasonable projections of the 

'Ihe process conditions i n  the gas i f ie r  were determined from the 
k ine t ics  data  which show t h a t  the following approaches t o  equilibrium i n  the  
d i f fe ren t  reactions are reasonable. 

Percent Approach t o  
Equilibrium 

'(graphite) + * HZ = 80 

CO + H20 = C02 + H 2  100 

24.5 

In  Table I the C02 present i n  the gas i f ie r  i s  equivalent t o  the 
equilibrium COB pressure f o r  the acceptor reaction. 
t h i s  reaction t o  be rapid, a s m a l l  p a r t i a l  pressure driving force actual ly  
would be required. 

Although our data show 

The flowsheet and material  balance serves largely as a framework 
for  the discussion of required acceptor properties. 
hear t  of the process, select ion of a sui table  material  i s  the  required f i r s t  
s tep  i n  the process development. 

Since the acceptor is the 

The acceptor must be physically rugged, such that it r e s i s t s  
excessive a t t r i t i o n  and thus is separable i n  the regenerator from the f inely-  
divided char ash. 
repeated cycling through the conditions imposed i n  the  process as vel1 as by 
interact ion with char ash. 

It must be res i s tan t  t o  chemical deactivation caused by 

Finally,  the  conditions within the gas i f ie r  and 
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regenerator must b e  consistent w. i fh  tiic thennodyrianic propcrLlcc of ~ i i , ~  

acceptor. 

One fea ture  of the acceptor which w i l l  be iiiscuseec i:? :i:urc w t c i . ~  
later i s  i t s  tendency t o  m e l t  a t  cer ta in  conditions. 
l i s t e d  i n  Table I, t h i s  property necessitates tha t  tnc p a r t i a l  pressure of 
steam does not exceed about 13 atmospheres. I n  Figure 1, t h i s  i s  accornpiioneti, 
as shown, by recycling about 45 percent of the gas i f i e r  effluent; ar?d mixing 
with the incoming steam, 

For the corlditior& 

Experimental Method 

The i n i t i a l  exploratory studies were car r ied  out i n  the 1-112" I .D.  
high pressure Uniloy reac tor  system used i n  the  e a r l i e r  k ine t ics  studies of 
the H2-H20-char system(4). 

The studies on the  properties of the  acceptor were carried out i n  
the  equipment shown schematically i n  Figure 2. 
prescreened t o  a s i z e  of 24 x 28 mesh were t rea ted  i n  a 1" I.D. x 8" long 
f lu id ized  bed reactor. The thin-walled, s t a in l e s s  s t e e l  reactor was contained 
along with i t s  e l e c t r i c a l l y  heated furnace i n  a one- l i te r  high pressure 
autoclave. 

The acceptor so l ids ,  usually 

For atmospheric pressure work, a quartz reactor was  used t o  replace 
the high pressure reactor. The process gas i n  both reactors i s  introduced 
ax ia l ly  down through a d ip  tube,reverses d i rec t ion  and f lu id izes  the acceptor. 
The quartz tube reac tor  w a s  heated by immersion i n  a fluidized sand bed 
furnace. 

The reactor w a s  supplied e i the r  w i t h  metered dry gas (COB, N 2 ,  and 
any desired premixed blend containing C02, N2, S02, H2S, and H2) o r  with dry 
gas-stem mixtures. 
through t h e  steam generator. 
water temperature i n  the  generator which was controlled t o  2 O.l°F. 

I n  the latter instance, the  metered dry gas was passed 
Steam p a r t i a l  pressure was determined by the  

The composition of t he  dry e f f luent  gas was monitored 'continuously 
by a thermal conductivity ce l l .  
the  reference s ide  of t h e  ce l l .  

Dry feed gas was supplied continuously t o  

Measurements of the equilibrium constants i n  several reactions of 
i n t e r e s t  were made i n  the  above equipment. 
methods used and t h e  results of t h i s  work w i l l  be published separately. 

A deta i led  description of t he  

For study of deactivation at  process conditions, the acceptor was 
put through a se r i e s  of carbonation and calcination cycles which simulated 
the process conditions i l l u s t r a t e d  i n  Figure 1 and Table I. 
reactor was  6 grams of 24 x 28 mesh acceptor and 60 grams of 100 x 150 mesh 
granular fused per i c l a se  which was used as an i n e r t  diluent. 
used t o  minimize reac t ion  heat e f f ec t s  and consequently t o  provide be t t e r  
temperature control i n  t h e  carbonation and calcining steps. 

The charge t o  the 

The diluent was 

The t o t a l  pressure 
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w a s  adjusted t o  8.87 atmospheres and the bed fluidized with a COP-& mixture. 
The p a r t i a l  pressure of COa was 5-8 ab .  depending on the desired calcining 
temperature. The super f ic ia l  gas velocity was held between 0.3-0.4 ft/sec a t  
a l l  times. 

The bed was then heated rapidly t o  the calcining temperature which 
was held f o r  d i f fe ren t  runs a t  1900"F, 1950'F and 2000°F. 
analyzer monitored the  course o f  the  calcining. 
t he  i n l e t  gas composition was adjusted t o  give 1.5 atm. COB p a r t i a l  pressure 
and the  bed was  cooled rapidly to  1700°F when 7.0 a b .  steam p a r t i a l  pressure 
w a s  substi tuted f o r  most of t he  nitrogen. 
decreased t o  1650'~ where it was held until recarbonation was e s sen t i a l ly  
complete as shown by the e f f luent  gas analyzer. Nitrogen was subs t i tu ted  at 
this point f o r  steam and the cycle repeated for the desired number of times. 
The time required f o r  a complete cycle was 20-25 minutes. 

The e f f luent  gas 
Upon completion of calcining, 

The bed temperature w a s  then 

A t  the end of the prescribed number of cycles the acceptor was  
f lu id ized  a t  1650"~ with an N2-CO2 gas mixture containing 1.5 atm. p a r t i a l  
pressure of C02 and held under these conditions f o r  1.5 minutes, !The acceptor 
w a s  then cooled rapidly and tes ted  f o r  ac t iv i ty .  

A Chevenard themobdance modified by using a l i n e a r  transducer t o  
ae t ec t  beam posit ion and sample w e i g h t  was  used to  a r r ive  a t  a standard ac t iv i ty  
measurement. 

The acceptor sample (about 200 milligrams) w a s  placed i n  a monolayer 
between two s t a in l e s s  s t e e l  screens held by a r ing  which rested on the  support 
rod. 
with respect t o  the  COP p a r t i a l  pressure ex ter ior  t o  the  par t ic les .  

Gas flow downward through the pa r t i c l e s  maintained d i f f e ren t i a l  conditions 

The thermobalance was operated isothermally a t  1525'F and at  atmos- 
pheric pressure. 
composition of the gas flowing through the sample holder. 
provided prackically instantaneous change from N2 used f o r  calcining t o  Cog 
used f o r  recarbonation. The flow ra tes  of each of the  gases were chosen so 
that the  combined ef fec ts  of buoyancy and velocity head were the same. 

The sample first w a s  calcined and the  w e i g h t  loss  recorded. 

Calcining and recarbonation were accomplished by changing t h e  
The gas inlet system 

It v a s  
then recarbonated f o r  a standard t i m e  period of 7 minutes. 

The standard ac t iv i ty  value used i n  the discussion which follows is 
an average carbonation ra t io ,  R, from the  two above operations defined as 
f ollars : 

R =  - Average Cam3 
CamS + CaO 

The study of potent ia l  a c t i v i t y  loss due to repeated su l f id ing  of 
the  acceptor and regeneration of the Cas formed w a s  made i n  the quartz tube 
reactor. 
regenerated by f lu id iz ing  i n  air a t  1950'F u n t i l  SO2 evolution ceased. 

The acceptor w a s  sulfided .in an &S-& mixture at 16P0F and wae 
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A n  accelerated test  f o r  po ten t ia l  deactivation due t o  in te rac t ion  
w i t h  ash w a s  used. 
o r  oxide form was br ique t ted  using a Celvacene grease binder with -100 mesh 
ash i n  a w e i g h t  r a t i o  of 53 par t s  acceptor i n  oxide form t o  30 par t s  of ash. 
The ash was derived by a i r  combustion of char from Pittsburgh Seam coal i n  
a f lu id ized  bed, Ash was used i n  both oxidized and reduced forms. The 
briquets were calcined a t  1500°F and crushed. 
t rea ted  f o r  16 hours i n  a f ixed  bed a t  various temperatures and w i t h  several  
d i f f e ren t  types of atmospheres.' In some cases a f t e r  the i n i t i a l  treatment, 
the acceptor-ash fragments were subjected t o  the standard cycling between 
carbonation and calcination. A f i n a l  ac t iv i ty  test was then run i n  the 
thermobalance as described above after the acceptor had been cleaned of 
adhering ash. 

Acceptor s ized  t o  20 x 24 mesh i n  either the carbonate 

The +8 mesh fraguents were 

Results and Discussion 

a. Fixed Bed Experiments 

The i n i t i a l  experiments using a f ixed  bed of char and lime 
demonstrated the bas ic  f e a s i b i l i t y  of the process from the chemical point 
of view. Comparative r e s u l t s  f r o m  a p a i r  of f ixed  bed runs with and without 
l i m e  present are shown i n  Table 11. The char used here is the same devolati l-  
i zed  "Disco" char e a r l i e r  employed i n  the k ine t i c s  studies. 
the  blank experiment t o  g ive  the  same volumetric r a t i o  of char t o  inorganic 
material. 

Sand vas used i n  

The data of Table -11 are without a great deal of quant i ta t ive  

They do illustrate, hgwever, the principle 
significance due t o  uncontrolled temperature gradients i n  the  bed and vari- 
a t ion  of carbon burnoff w i t h  time. 
of t he  C02 acceptor method i n  providing f o r  removal of carbon dioxide from 
the  gas w i t h  simultaneous enrichment of the product gas in hydrogen and 
methane. 

b. Study of Melt Formation 

In the f ixed  bed run, the acceptor melted at the conditions 
used. 
occurs i n  a fluidized bed of  acceptor a t  1650"~ and 11 ab .  steam p a r t i a l  
pressure, over the e n t i r e  range of carbonation ratios. 
gation of m e l t  formation i s  now underway. Results so far show that the  steam 
p a r t i a l  pressure may be as high as 13 ab .  a t  1650'~ without fonning the  m e l t ,  
and that the m e l t  i s  a ternary l i q u i d  composed of Ca(0H) , CaCO3, and CaO. 
Phase equi l ibr ia  behavior of t h i s  i n t e re s t ing  system wilf be published when 
the  work is  completed. 

Subsequent inves t iga t ions  showed tha t  ne i the r  melting o r  agglomeration 

A detailed inveati-  

' 

c. Thennodynamic Limitations 

Equi l ibr ia  i n  the  reactions given below are the most per t inent  
t o  the process: 

CaO + &S = C a S  + &O 
1/4 CaS + 3/4 Cas04 = CaO + SO2 

(1) 

(2) 

(3 1 Caco3 = cao + Coe 



The experimentdly determined v d u e s  f o r  reaction (1) a re  
given i n  Table 111. 
able i n  the l i t e r a t u r e  previously. 

No reliable values f o r  t h i s  equilibrium have been ava i l -  

The experimentally determined values f o r  reaction ( 2 )  a re  shown 
i n  Figur 6. 
Zawadskiy7). 

The values check well with those previously determined by 

The data i n  reaction ( 3 )  a re  shown i n  Figure 5. 
l i t e r a t u r e  data imply t h a t  the equilibrium CO2 pressure depends on t h e  or ig in  
of the calcium carbonate. Our measurements on stones ranging i n  composition 
from pure limestone to  impure dolomite, and having widely d i f fe ren t  geologic 
origins,  have shown tha t  the equilibrium C02 pressure i s  independent of a l l  
conditions except temperature. Figure 5 shows t h a t  our data agree very well 
with those of Smyth and Adams(3), who used pure ca l c i t e  as the  source of 
CaC03. These data m u s t  now be accepted as providing the cor rec t  values. 

Some of the 

Experimentally, all three reactions have been shown t o  be rapid 
and equilibrium should be closely approached i n  ac tua l  operation of the 
process. 
t ha t  substantially all the su l fur  released from the  char i n  the  gas i f i e r  w i l l  
be absorbed by the acceptor as Cas. This su l fur  must be rejected as SO2 i n  
the regenerator. The regenerator must be operated w i t h  a s l i g h t  deficiency 
of owgen such tha t  there i s  no oqygen breakthrough. Under these conditions 
the equilibrium f o r  reaction (2)  is controlling. 

The high values f o r  the equilibrium constants i n  reaction (1) mean 

Reaction ( 3 )  determines the minimum temperature f o r  operation 
of the regenerator t o  provide a driving force f o r  calcination of the  acceptor. 
The required temperature i s  higher, of course, the higher the  operating 
pressure of the system. The operating pressure i s  thus s e t  by s t e m  pressure 
l imi ta t ion  i n  the  gas i f ie r ,  i.e., l e s s  than 13 atmospheres and by the  l i m i t -  
a t ion  s e t  on regeneration temperature by the equilibrium i n  reaction ( 3 ) .  
It i s  on this bas is  t ha t  the  operating pressure of 300 ps ia  used i n  the- 
i l l u s t r a t i v e  example i n  Figure 1 and Table I was arrived at. 
la t ions  show t h a t  the driving force f o r  the  calcining reaction goes to  zero 
a t  1935'F and a pressure of 3,oO psia. 

Further calcu- 

The su l fur  rejection reaction (2) i s  not cont ro l l ing  since as 
the da ta  i n  Table IV show the relative driving force i s  much greater than 
f o r  the calcining reaction. 
ing only f o r  coals whose s u l f u r  content i s  w e l l  beyond t h a t  of most s t e m  
coals. 

The sulfur re jec t ion  problem would become limit- 

d. Acceptor Selection 

The choice of acceptor so l ids  i s  determined by the  fac tors  of 
physical strength, high r eac t iv i ty  i n  carbonation and calcination reactions 
and resistance t o  deactivation upon exposure t o  process conditions. 

1 3 3  
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A number of limestones and dolomites s a t i s f ac to r i ly  m e t  the 

Examples of the r eac t iv i ty  of a typical 
f i rs t  two conditions. The r eac t iv i ty  f o r  calcining and recarbonation 
reactions a re  also su i tab ly  high. 
dolomite both i n  f resh  and thermally t rea ted  conditions are,  given i n  
Figures 3 and 4. 

The data i n  Figures 3 and 4 show the r a t e  of the calcining 
and recarbonation reactions as measured on t he  thermobalance at 1525'F in 
a nitrogen and CO, atmosphere, respectively. 
case the  reaction is  nearly complete a f t e r  2 minutes exposure time. 
more de ta i led  k ine t ic  study is  now i n  progress. 

It i s  noted t h a t  i n  e i the r  
A 

None of the limestones o r  impure dolomites, however, showed 

A dolomite from Western Ohio (Greenfield formation) had 
suf f ic ien t  resistance t o  deactivation under process conditions t o  be usefu l  
i n  t h e  process. 
excellent resistance t o  deactivation and was selected f o r  fur ther  detailed 
study. 

The reserves of the Greenfield dolomite are suf f ic ien t ly  
la rge  so t h a t  it would be a logica l  choice f o r  a fu ture  gasification plant 
located i n  e i ther  I l l i n o i s  or the Ohio River Valley. 

Analysis of t h e  Greenfield stone is  given below: 

Cam3 52.28 
MgW3 44.61 
a203 + Si02 + Fez03 2.24 
FeCOs 0.20 
Unaccounted f o r  0.67 

A t  process conditions and at all experimental conditions 
cacc 2- +Lis vnrk, the M ~ M J  r 'qonent of dolomite i s  unstable and de- 
composes t o  form MgO which' i s  completely i n e r t  a t  these conditions. 

e. Deactivation Under Process Conditions 

!&e e f f e c t  of cycling the 24 x 28 mesh Greenfield dolomite 
through simulated process conditions i s  shown i n  !hble V. I n  no case did 
the a c t i v i t y  decrease s ign i f i can t ly  below 0.80 Standard Carbonation ratio.  
Since some fresh acceptor make up inevitably w i l l  be required because of . 
incomplete separation of t he  acceptor and spent char i n  the  regenerator, the  
equilibrium ac t iv i ty  of the rec i rcu la t ing  acceptor will be at a l eve l  some- 
what above 0.80. 

The physical strength of the stone i s  remarkably high. A t  
l e a s t  98 percent and usually a t  l e a s t  99 percent of the  original. acceptor 
was recovered as +48 mesh material  after each one of the above tes t s .  

/ 



The makeup requirements f o r  the process i n  Table I were 
based on 94 percent recovery of the regenerated acceptor from the spent 
char i n  the regenerator which is  adequately conservative. 

A similar series of runs were carr ied out i n  which the 
Greenfield dolomite was converted t o  Cas followed by regeneration of the 
CaO by oxidative decomposition of the  C a s  a t  1950'F. No deactivation of 
the stone due t o  the su l fur  cycle was noted. 

The stone i s  also highly r e s i s t a n t  t o  deactivation by in te r -  
action with char ash as the results i n  Table V I  show. 
acceptor on exposure t o  ash does not depend upon the oxidation s t a t e s  of 
the  ash t h a t  can exist at  process conditions, nor on the extent of carbona- 
t i o n  of the lime. 

The a c t i v i t y  of the 
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TABLE I1 

Comparative Fixed Bed Runs i n  the  
Presence and Absence of Lime 

Steam Feed Rate, 0.8 x mols/hr. Total  Pressure, 30 a h .  

W t .  Solids Average D r y  Make Gas Steam Median 
RUn Charged Composition Conversion Bed Temp. 

l b s  Cog H2 C& CO 7 "F 

B l a n k  ( Char - 0.5 23 48 9 20 t 1620 
( Sand - 1.87 

Lime ( Char - 0.5 0.5 79.5 1 7  3 70 1640 
( Lime - 0.87 

* Not determined. 
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TABLE I11 

Equilibrium Data i n  Reaction 

CaO + H$ = C a s  + H20 

K = HzO/H&3 

2030 
1320 
837 
587 

TABLE IV 

Thermodynamic Driving Force i n  
Regenerator at 1950°F and 300 ps ia  

P Driving Force Atm. 
P%/Equil. Pm2 
Pco,/Equil. PcO, 

Regenerator Effluent Gas, Mol $ 

H 2  
co2 
N 2  
H20 co 
SO2 

0.55 
0.93 
0.37 

0.01 
36.29 
61-39 
1.19 
0.79 
0.33 



TABLE V 

Effect of Cycling Greenfield Dolomite (24 x 2 8 ~ )  
Thru Simulated Process Conditions 

Recarbonation Conditions - 1650"~ - 1.5 ah. C02 - 7.0 atm. H20 

Calciner Total Time at 
Temp. Process Conditions, hrs. No. of C'ycles Std. Carb. Ratio 

1900°F 

I 
2.9 
2.2 
7.4 
8.0 

1950°F 

* 
2000'F 

6.0 .1 

2.3 
5.5 
8.5 

2 
5 
5 

20 

5 
1 2  
20 

5 
12 

0.87 

0.80 
0.80 

0.77 

0.81 
0.81 
0.76 

0.81 
0.77 

TABLE V I  

Effect of Ash 

The acceptor w a s  briquetted with ash and held f o r  16 hours a t  
t he  conditions l i s t ed .  

Form of No. of Ambient 
nun Acceptor Ash O F  Cycles Gas Sta.'.Cakb> Ratio - - 
a2 oxide oxidized 1650 1 air .81 

reduced 1900 1 H2 .76 
oxidized 1900 1 (2) -76 

H76 carbonate lgoo 0 (2) .80 

a 9  
Q20 
a4 

Q33 oxide 5 (2) .e76 ' 

reduced ( 1650 1 H2 -90 1 

(1) 
(2) 

Ash i n  form of 7 6  burnoff char. 
I n l e t  gas was 90$ C02-10$ H2 which was converted by the  water 
gas s h i f t  reaction at  run conditions t o  the following composition: 

CO2 80.5 mol 46, H2 0.546, H20 9.5% 0 9.546. 
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