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METHANATION FOR COAL HYDROGASIFICATION 

A. L. Lee, H. L. Feldkirchner and D. G. Tajbl+ 

Institute of Gas Technology 
Chicago, lllinois 60616 

INTRODUCTION 

The goals of this study a r e  as follows: 

Tes t  commercial  methanation catalysts  to determine the most suitable one for  
the methanation s t ep  of the IGT HYGAS Process  for  producing pipeline gas  f r o m  
coal. 

P e r f o r m  a life study on the chosen catalyst. 

Obtain pilot plant design data f o r  anticipated gas  coinpositions f r o m  the hydrogasi- 
fication reactor. 

Develop a kinetic equation for  the methanation catalyst selected under actual 
operating conditions. 

Dirksen and Linden4 did extensive work on synthesis-gas methanation and gave 
detailed discuisions of the i r  work. 
cia1 catalyst selection fo r  the HYGAS Process  and described the experimental appa- 
ra tus .  
and developed a pract ical  reac tor  operating scheme. 

0 

I 

Tajbl e t  a1.I' presented the resu l t s  of the comrner-' 
1 

Ear l i e r  we obtained a ra te  expression6 for  the design of the pilot plant reactor  

'1 
This paper presents  the resu l t s  of the catalyst life study, a reac tor  stability study, 

In addition to the references cited in  the text, we have also p r e -  
I 

and a kinetic study. 
sented a l i terature  survey. 
r e fe r  t o  the bulletin by Dirksen and Linden. 

F o r  a m o r e  complete review of l i t e ra ture  pr ior  to 1963, 

\ 

KINETIC STUDY I 

The apparatus used for  th i s  study was described in detail previously. A sche- 
matic d iagram of the modified sys tem is presented in Figure 1. The modifications 
a r e  the benzene sa tura tor ,  high-pressure sampling, and a bet ter  gas  chromatograph. 
The purpose of a benzene sa tura tor  is to  study the effect of t races  of benzene in the 
feed g a s  on the rate of methanation and the long-term activity of the catalyst. 
Benzene is produced in the HYGAS Process  for  use in  the s lu r ry  feeding of coal to 
the gasifier. Thus, t r a c e s  of benzene will be present  in the methanator feed s t ream. 

To obtain pilot plant design data, th ree  feed gases covering the range of antici- 
pated methanation feed compositions were  used (Table 1). 
elsewhere. 
(Equation 1) represents  the data: 

The resu l t s  were  presented 
To summar ize  these findings, we found that a r a t e  expression6 

0. 62 r = k p  - co 

*Now with Mobil Oil Corporation, Paulsboro, New Jersey.  
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Table 1. COMPOSITIONS OF FEED GASES 

Feed J-Iiph CO Intermediate CO Low CO 
1 mole % 

Carbon Monoxide 

Hydrogen 

Total 

. Carbon Dioxide 

i Methane 

10.0 7.0 2.4 
2.1 2.1 2.0 

34.5 26.1 13. 5 
53.4 

100.0 
- 64.8 

100.0 
- 82.1 

100.0 
- 

Using the same data, Wen e t  al. l3 found a ra te  equation: . 

(2) 
0.7 0.3 I = kPCO PHz 

Both equations of the fo rm of 1 and 2 can f i t  the data reasonably well, as Weller" i has shown. 

l 

' used in our plant. 

To improve the above ra te  expressions fo r  the IGT methanation process ,  the reac-  
tion-rate study was extended, mainly in tes t s  on 1 /4-inch catalyst pellets that will be 

Feed gases  containing only Hz and CO were used to determine the 
GO order;  feed gases  containing Hz, CO, and He were used to determine the Hz order  
and the effect of an iner t  on the methanation ra te ;  feed gases  containing Hz, CO, and 

I CH, were used to determine the effect of a la rge  CH, concentration in the feed on the 
ra te  of methanation and hence on the CH, order ;  feed gases  containing Hz. CO, CH4, 

; and C6H6 were  used to determine the effect of benzene; and feed gases  of Hz, co, 
CH,, and C6H6 with t races  of mercaptan (0.3 ppm) and thiophene (0.8 ppm) were used 
to  determine the effect of organic sulfur on the activity of the catalyst. 

I- 
These data - 

a r e  presented in Table 2 .  

We found that the Hz order  is about 0.5, with and without CH4 in the feed gas ,  as 
illustrated in Figure 2 ;  the effect of CH, i s  noticeable only a t  near-equilibrium con- 
ditions (Figure 2); the order  of CO is about 1 (Figure 3); the effect of He i s  nil; the 
effect of 'C6H6 (up to 1 % in feed) i s  nil; and the effect of organic sulfur in the gas on 
the rate  of the methanation reaction is nil a t  the low concentration levels studied 
(mercaptans and thiophene up to  1 .1  ppm). 

The ra te  expression: 

cor re la tes  most  of the experimental  data except when excess  Hz and/or  CH, a r e  
present. To cover the entire range of gas compositions, Equation 3 was modified to 
the following form: > 

k PcoP;,5 
r =  (4) ' Kt PHz ' K3 PCH, 

The resul ts  a r e  presented in Table 2 and Figure 4. 

There a r e  numerous ra te  expressions proposed for  methanation in the literature. 
Some of those that a r e  related to  this study a r e  presented in Table 3 .  
work in the literature was done with feed gases  containing Hz and CO o r  Hz, CO, and 
COz only and at relatively low pressures .  Table 3 is presented to give a quick' over-  
a l l  view of the various methanation ra te  equations proposed. 

Most of the 
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CATALYST LIFE TESTS 

When this  program was  begun, no successful work had been reported on  fixed-bed 
methanation of high carbon monoxide, high-methane -content gases  with typical 
commerc ia l  nickel catalysts. Thermodynamic calculations indicated that the gases 
that would have to be methanated would be capable of depositing carbon in the range 
of tempera tures  and p r e s s u r e s  expected. Fur ther ,  in packed-bed reactors ,  the 
high heat of reaction was  expected to cause catalyst  deactivation through hot s p o t s  
and carbon deposition. These  problems had been encountered by others. 

We, therefore, s e t  up a sma l l  laboratory tes t  unit to t e s t  commercial  catalysts 
in a fixed-bed reactor  under the expected operating conditions. 
g r a m  of the unit is  given in Figure 5. 
the following typical composition ranges. 

A schematic dia- 
Synthetic gas  mixtures were  prepared having 

Composition, 
Component mole % 

co 3. 5-12.7 
COZ 0.6-3. 2 
H2 18.8-57. 5 
CH4 24.3-72.6 
CZH6 0. 1-1.3 
NZ 1. 2-4. 0 

Sulfur was removed f r o m  the feed gas to l e s s  than 0 . 1  ppm by beds of activated c a r -  
bon and zinc oxide. 

The unit was designed for around-the-clock operation with a minimum of operator 
attention. The feed gas rate, the reactor and guard chamber ternpcratures, and the 
unit p re s su re  were controlled and recorded. 
f r o m  the unit automatically by a liquid-level controller. 
was  monitored by a n  MSA L A  model infrared analyzer and recorded continuously. 
Exit-gas volumes were  recorded  manually a t  regular  intervals, and samples of feed 

tography. 

The condensed product water was drained) 

1 
.I 

,! 
t 

The product-gas CO content 

and exi t  gases  were taken throughout the t e s t  per iods for  analysis  by gas chroma- 

i 
A diagram of the r eac to r  and electr ic  heater  and furnace is given in Figure 6. 

The 4-inch-deep catalyst  bed was held between two packed beds of g lass  beads. The 
upper pa r t  of the reac tor  was  enclosed in an electr ic  furnace and the lower par t  was 
wrapped by an electric res i s tance  heater. 
four points indicated. 

, 
Bed tempera tures  were  recorded a t  the 

Initial t e s t s  were with a commercial  nickel-on-alumina catalyst. The catal.yst, 
Feed  gases  contained 4 

Higher temperatures were  r e -  

\ 

supplied as l /4- inch  pel le ts ,  was crushed to -12 t18  USS. 
mole percent CO in some t e s t s  and 13 mole percent in others. In a l l  tes ts  with this 
catalyst  there  was considerable carbon deposition. 
quired to obtain sufficient catalyst  activity for  the desired reduction of carbon mon- 
oxide to 0. 1 mole percent, which may have accelcrated carbon dcposition rates .  

Tes t s  with 1/8-inch pel le ts  of nickel-on-kieselguhr catalyst were  successful. 

, 

One run las ted 1420 hours ,  during which t ime conditions were  varied considerably 
(Table 4). 
terminated voluntarily with the CO content of the exit gas  s t i l l  at  only 0. 1 mole 
percent. 
conditions. 

Space velocities of over 9000 S C F / C F  cat. -hr  were used. The run was . 

The CO, conversion showed 110 consistent trend with variations in operating 
. Ethane hydrogenolysis was near ly  complete f o r  the ent i re  run. 
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Although the nickel-on-kieselguhr catalyst is l e s s  strong than the nickel-on- 

alumina one, i ts  superior  performance makes  it the prefer red  catalyst  for  the 
HYGAS Process .  

REACTOR STABILITY . 

Because the methanation reaction is highly exothermic,it i s  conceivable that the 
catalyst-bed temperature  could exceed the calculated adiabatic equilibrium tempera- ~ 

tu re  at some operating conditions and in some reactor  configurations. 
calculations indicated possible instability in the packed-bed methanation reactors  % 

m o r e  detailed study of reac tor  stability was undertaken. 

Prel iminary 

for  the HYCAS pilot plant and large-scale  plants being designed. Therefore, a i 
The first approach was  an attempt to tes t  for  stability without requiring the I 

, 
' 

The difference between the catalyst and gas-phase temperature 

solution of the several  par t ia l  differential equations involved. One can reason that 
i n  an adiabatic steady- s ta te  system with the single-path catalytic reaction presumed 
here ,  the temperature of the gas  phase must  lie between the initial and final equili- 
b r ium temperatures.  
is proportional to the reaction r a t e  if the gas-particle heat t ransfer  coefficient i s  
assumed constant. Therefore,  if the catalyst  temperature  i s  not excessive at the 
known inlet conditions, a sufficient condition for  the sys t em to be stable is that  the 

dition f o r  stability is - 
"reaction rate dec reases  with distance through the reactor ;  that is, a sufficient con- 

I But in this system the reactant  CO dec reases  with distance so that the condition i s  
equivalent to: 1 

where the reaction r a t e  is a function of the catalyst  temperature,  and the concentra- I 
tion of C O  near the surface is in turn dependent on the CO concentration in the gas , 
phase. Equation 7 follows directly f rom Equation 6 : 

d r  1 0  ( 7 ) '  dlXCOls + ar dTS 

(*)% d("C0)g (8% ijXco/,  d[xCO)g = "("..lp 
F r o m  steady- state considerations and neglecting the second-order effects of var ia-  
tion in physical propert ies  with temperatGre and composition, one can show that - 

T =- * *  ht AH + [k.d$k.&] ( A H + T o )  ( 8 )  ~ 

Operating on these equations leads to:  
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(The right-hand side of Equation 10 requires  the kinetics of the reaction in t e rms  of 
the catalyst conditions. 
)greater  than zero if the reaction r a t e  is temperature-independent, one can conclude 

Wen's inter-  
However, 

,our kinetic data retain a significant temperature  dependence a t  high temperatures ,  
which leads to negative values €or the expression in Equation 10 with ht and h, 
cappropriate to the expected flow regime. 

This is the case  at hand. Noting that this quantity is 

fo r  the kinetics proposed by Wen" the system i s  always stable. 
retation of IGT data i s  that there  is no temperature  effect above 600 "F. 

10 i s  sufficient for  stability but not necessary.  

T for  the possible range of values of X 

never exceeds the final temperature.  

negative values leave us  in an indeterminate position. But we can, 

S [ co]g from 
quations 8 and 9. At the expected levels of transfer ra tes ,  with our kinetics, the 

In Figure 7 the estimated catalyst temperatures  a r e  shown a s  a function of degree 
of conversion at the expected t ransfer  r a t e s  (30,000 Btu/hr-sq f t  per  cu f t  of void 

kolume) fo r  a 540 "F feed gas  containing 4 mole percent CO in excess  Hz. 
shows resu l t s  for t ransfer  r a t e s  that a r e  reduced 30-fold (the heat and mass  t ransfer  

'coefficients proportionately) - an effect corresponding to a meaningless 900-fold 
Idecrease in velocity. The higher temperature  levels only exceed the final tempera-  
lture by 25°F. 
low still would not become excessively hot. 

1 The kinetics and the mass and heat t ransfer  r a t e s  collected by IGT were  used to 
es t imate  the required space velocities for the methanation process .  

(the resu l t s  a r e  given for  a 4 mole percent  CO feed gas a t  a 550°F feed temperature 
in a steady-state system, with a feed ra te  of 126 lb-mole/hr-sq f t  of reac tor  c ros s  

fsection . For  a product gas with 0.1 mole percent CO, the space velocity i s  computed 
to  be 47,000 SCF/CF-hr. 

ivelocity by only 8%. 

f 
!because of the assumption of temperature  independence above 600 "F, do not predict 

Figure 7 also 

Therefore,  even spots in the reactor  where the velocity is unusually 

In Figure 8, 

A ninefold change in velocity affects the required space 

As a check, the system was calculated using kinetics proposed by Wen, l3 which, 

a s  high a reaction rate  a t  the higher temperature  a s  do our kinetics. 
a r e  a l so  given in Figure 8.  Wen's kinetics lead to an estimate of space velocity to 
produce 0.1 mole percent CO at 550 "F  with a space velocity of 27,000 SCF/CF-hr.  
Since it is quite probable that Wen interprets  a diffusion limitation in the original 

of space velocities based on our original data. 
were designed using a space velocity of l e s s  than 5000 SCF/CF-hr .  

The resu l t s  

1 experiments a s  a slow reaction ra te ,  the 27,000 represents  a lower bound on estimates 
Our pilot plant methanation reac tors  

It i s  possible 
, that we can methanate the ent i re  pilot plant output in two methanation stages. 
r 
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NOMENCLATURE 

A 

B 

C 

Cl 

CZ 

c3 

c: 
c1 

c: 
-? 
E 

E1 

ht 

hm 

AH 

k 

K 

n 

P 

r 

r 

R 

T 

X 

Z 

0 

Zl  

z2 

= surface equilibrium constant' 

= surface equilibrium constant' 

= heat capacity 

= reaction ra te  constant3 

= surface equilibrium constant' 

= surface equilibrium constant' 

= reaction ra te  constant' 

= surface equilibrium constant3 

= surface equilibrium constant3 

= surface equilibrium constant' 

= surface equilibrium constant' 

= activation energy" 

= heat t ransfer  coefficient 

= mass  t ransfer  coefficient 

= heat released per  unit reaction 

= reaction r a t e  constant 

= surface equilibrium constant 

= order  of reaction 

= part ia l  p ressure  

= reaction r a t e  

= initial reaction r a t e  

= gas constant 

= temp e r atur e 

= mole fraction 

= distance through reac tor  

= Arrhenius constantlo 

= constantlo 

Creek Let ter  

p = density 

Subs c r i?t s 

g = gas 

0 = initial 

6 = surface 

I 

Y 
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Figure 1. SCHEMATIC DIAGRAM OF METHANATION 
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Figure 2 .  ORDER OF METHANATION REACTION WITH 
RESPECT TO HYDROGEN IS 1 / 2  
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Figure 4. ANALYSIS O F  METHANATION DATA 
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Figure 6. LABORATORY FIXED-BED R E A C T O R  
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Figure 7. ESTIMATED STEADY-STATE TEMPERATURES I N  
METHANATION REACTOR 
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Figure 8. CALCULATED METHANATION REACTOR PERFORMANCE 


