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METHANATION FOR COAL HYDROGASIFICATION

A, L. Lee, H, L. Feldkirchner and D.G. Tajbl#

Institute of Gas Technology
Chicago, Illinois 60616

INTRODUCTION Co S

The goals of this study are as follows:

® Test commercial methanation catalysts to determine the most suitable one for
the methanation step of the IGT HYGAS Process for producing pipeline gas from
coal. i

® Perform a life study on the chosen catalyst.

® Obtain pilot plant design data for anticipated gas compositions from the hydrogasi- |
fication reactor, :

e Develop a kinetic equation for the methanation catalyst selected under actual
operating conditions. . :

Dirksen and Linden? did extensive work on synthesis-gas methanation and gave N
detailed discussions of their work. Tajbl et al.!® presented the results of the commer-’
cial catalyst selection for the HYGAS Process and described the experimental appa- 1
ratus. Earlier we obtained a rate expression® for the design of the pilot plant reactor
and developed a practical reactor operating scheme. 1

: i
!

This paper presents the results of the catalyst life study, a reactor stability study,
and a kinetic study. In addition to the references cited in the text, we have also pre-
sented a literature survey. For a more complete review of literature prlor to 1963,
refer to the bulletin by Dirksen and Linden.*

¢

KINETIC STUDY \

The apparatus used for this study was described in detail previously. ! A sche-
matic diagram. of the modified system is presented in Figure 1. The modifications
are the benzene saturator, high-pressure sampling, and a better gas chromatograph.
The purpose of a benzene saturator is to study the effect of traces of benzene in the "’
feed gas on the rate of methanation and the long-term activity of the catalyst.
Benzene is produced in the HYGAS Process for use ih the slurry feeding of coal to
the gasifier., Thus, traces of benzene will be present in the methanator feed stream.

To obtain pilot plant design data, three feed gases covering the range of antici-
pated methanation feed compositions were used (Table 1). The results were presented
elsewhere.!! To summarize these findings, we found that a rate expression
(Equation 1) represents the data:

0, 62

r=.kpC;O' : (1)

* Now with Mobil 0Oil Corporation, Paulsboro, New Jersey.
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Table 1. COMPOSITIONS OF FEED GASES

Feed High CO Intermediate CO Low CO
- mole %
Carbon Monoxide 10.0 7.0 2.4
Carbon Dioxide 2.1 2.1 2.0
Hydrogen 34.5 26.1 13,5
Methane 53.4 _ 64,8 82.1
Total 100.0 100.0 100.0
Using the same data, Wen et al, 1 found a rate equation:
— 0.7 _0.3
r =kpis PH, , _ (2)

Both equations of the form of 1 and 2 can fit the data reasonably well, as Weller!!
has shown.

To improve the above rate expressions for the IGT methanation process, the reac-

' tion-rate study was extended, mainly in tests on 1/4-inch catalyst pellets that will be
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used in our plant. Feed gases containing only H; and CO were used to determine the

'CO order; feed gases containing H;, CO, and He were used to determine the H; order

and the effect of an inert on the methanation rate; feed gases containing H,, CO, and
CH, were used to determine the effect of a large CH, concentration in the feed on the
rate of methanation and hence on the CH, order; feed gases containing H,, CO, CH,,
and C4H, were used to determine the effect of benzene; and feed gases of H;, CO,
CH,, and C¢H, with traces of mercaptan (0.3 ppm) and thiophene (0.8 ppm) were used
to determine the effect of organic sulfur on the activity of the catalyst, These data

‘are presented in Table 2.

We found that the H, order is about 0,5, with and without CH, in the feed gas, as
illustrated in Figure 2; the effect of CH, is noticeable only at near-equilibrium con-
ditions (Figure 2); the order of CO is about 1 (Figure 3); the effect of He is nil; the
effect of C¢Hg (up to 1% in feed) is nil; and the effect of organic sulfur in the gas on
the rate of the methanation reaction is nil at the low concentration levels studied
(mercaptans and thiophene up to 1.1 ppm). ' :

The rate expression:
r= kpco P;_.I: . ) (3)

correlates most of the experimental data except when excess H, and/or CH, are
present. To cover the entire range of gas compositions, Equation 3 was modified to
the following form: o B '
k PecoPr.
r = CO HZ (4)
1+ KZPHZ + K.3 pCH4

" The results are presented in Table 2 andFigu’re“l.

There are numerous rate expressions proposed for methanation in the literature.

' .Some of those that are related to this study are presented in Table 3. Most of the

work in the literature was done with feed gases containing H, and CO or H,, CO, and
CO, only and at relatively low pressures, Table 3 is presented to give a quick over-
all view of the various methanation rate equations proposed. :
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CATALYST LIFE TESTS

,When this program was begun, no successful work had been reported on fixed-bed
methanation of high carbon monoxide, high-methane-content gases with typical
commercial nickel catalysts. Thermodynamic calculations indicated that the gases
that would have to be methanated would be capable of depositing carbon in the range
of temperatures and pressures expected, Further, in packed-bed reactors, the
high heat of reaction was expected to cause catalyst deactivation through hot spots
and carbon deposition. These problems had been encountercd by others,

We, therefore, set up a small laboratory test unit to test commercial catalysts
in a fixed-bed reactor under the expected operating conditions., A schematic dia-
gram of the unit is given in Figure 5, Synthetic gas mixtures were prepared having
the following typical composition ranges,

Composition,
Component mole %
CO 3.5-12.7
CO, 0.6-3.2
H, 18.8-57.5
. CH, 24.3-72.6
C,H, 0.1-1.3
N, 1.2-4.0

Sulfur was removed from the feed gas to less than 0.1 ppm by beds of activated car-
bon and zinc oxide.

The unit was designed for around-the-clock operation with a minimum of operator
attention. The feed gas rate, the reactor and guard chamber tempecratures, and the

unit pressure were controlled and recorded. The condensed product water was drained]

from the unit automatically by a liquid-level controller. The product-gas CO content
was monitored by an MSA Lira model infrared analyzer and recorded continuously,
Exit-gas volumes were recorded manually at regular intervals, and samples of feed
and exit gases were taken throughout the test periods for analysis by gas chroma-
tography.

A diagram of the reactor and electric heater and furnace is given in Figure 6.
The 4-inch-deep catalyst bed was held between two packed beds of glass beads. The
upper part of the reactor was enclosed in an electric furnace and the lower part was
wrapped by an electric resistance heater. Bed temperatures were recorded at the
four points indicated.

Initial tests were with a commercial nickel-on-alumina catalyst. The catalyst,
supplied as 1/4-inch pellets, was crushed to —12+18 USS, Feed gases contained 4
mole percent CO in some tests and 13 mole percent in others. In all tests with this
catalyst there was considerable carbon deposition. Higher temperatures were re-
quired to obtain sufficient catalyst activity for the desired reduction of carbon mon-
" oxide to 0.1 mole percent, which may have accelerated carbon deposition rates,

Tests with 1/8-inch pellets of nickel-on-kieselguhr catalyst were successful.
One run lasted 1420 hours, during which time conditions were varied considerably
(Table 4). Space velocities of over 9000 SCF/CF cat. -hr were used. The run was
terminated voluntarily with the CO content of the exit gas still at only 0.1 mole
percent. The CO, conversion showed no consistent trend with variations in operating
conditions. Ethane hydrogenolysis was nearly comiplete for the entire run,
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Although the nickel-on-kieselguhr catalyst is less strong than the nickel-on-
alumina one, its superior performance makes it the preferred catalyst for the
HYGAS Process.

REACTOR STABILITY - ' : ' ‘ ,

Because the methanation reaction is highly exothermic,it is conceivable that the
catalyst-bed temperature could exceed the calculated adiabatic equilibrium tempera-
ture at some operating conditions and in some reactor configurations. Preliminary .,
calculations indicated possible instability in the packed-bed methanation reactors N
for the HYGAS pilot plant and large-scale plants being designed. Therefore, a

~more detailed study of reactor stability was undertaken. /

The first approach was.an attempt to test for stability without requiring the i
solution of the several partial differential equations involved, One can reason that
in an adiabatic steady-state system with the single-path catalytic reaction presumed
here, the temperature of the gas phase must lie between the initial and final equili-
brium temperatures. The difference between the catalyst and gas-phase temperature
is proportional to the reaction rate if the gas-particle heat transfer coefficient is
assumed constant. Therefore, if the catalyst temperature is not excessive at the
known inlet conditions, a sufficient condition for the system to be stable is that the

“ reaction rate decreases with distance through the reactor; that is, a sufficient con-
dition for stability is —
- dr < ’
az — © : (5)
But in this system the reactant CO decreases with distance so that the condition is
equivalent to: 3
DR : !
where the reaction rate is a function of the catalyst temperature, and the concentra-f
tion of CO near the surface is in turn dependent on the CO concentration in the gas
phase. Equation 7 follows directly from Equation 6 : i

’

dTS
d(X

dr
COjg

dr ‘ d{XCoLS N ( a¥ >0 (7))

B(Xco)s T, d{XCO)g 3T

s

= d(X
(XCO}S CO)g g
From steady-state considerations and neglecting the second-order effects of varia-
tion in physical properties with temperature and composition, one can show that —

LI AH Pcok‘wxcoh

T, B o {AH + To-) . (8)
[¥co)s = [¥colg ~ pg}rl"‘m o

Operating on these equations leads to:
dr [Br/a{XCOM— AH/cg (ar/a TS) '
d(XCO‘g 1+ {I/hmpg} ar/a(x —AH/ht‘arHTs)

(10)

o)
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IThe right-hand side of Equation 10 requires the kinetics of the reaction in terms of
the catalyst conditions. This is the case at hand. Noting that this quantity is
)lgreater than zero if the reaction rate is temperature-independent, one can conclude
hat for the kinetics proposed by Wen!? the system is always stable, Wen's inter-

retation of IGT data is that there is no temperature effect above 600 °F. However,
jour kinetic data retain a significant temperature dependence at high temperatures,
'which leads to negative values for the expression in Equation 10 ‘with h and hm
ra.ppropnate to the expected flow reglme.

r A positive value of Equation 10 is sufficient for stability but not necessary.
Consequently, negative values leave us in an indeterminate position. But we can,
‘and did, calculate the values of T for the possible range of values of (XCO} from

Equations 8 and 9. At the expected levels of transfer rates, with our kinetics, the
romputed catalyst temperature never exceeds the final temperature.

In Figure 7 the estimated catalyst temperatures are shown as a function of degree
of conversion at'the expected transfer rates (30,000 Btu/hr-sq ft per cu ft of void
fvolume) for a 540 °F feed gas containing 4 mole percent CO in excess H,. Figure 7 also
shows results for transfer rates that are reduced 30-fold (the heat and mass transfer
{coefficients proportionately) — an effect corresponding to a meaningless 900-fold
"decrease in velocity, The higher temperature levels only exceed the final tempera-
jture by 25°F, Therefore, even spots in the reactor where the ve1001ty is unusually
low still would not become excessively hot.

The kinetics and the mass and heat transfer rates collected by IGT were used to
estimate the required space velocities for the methanation process. In Figure 8,
rthe results are given for a 4 mole percent CO feed gas at a 550 °F feed temperature
in a steady-state system, with a feed rate of 126 lb-mole/hr-sq ft of reactor cross
jsection. For a product gas with 0.1 mole percent CO, the space velocity is computed
rto be 47,000 SCF/CF-hr. A ninefold change in velocity affects the required space
'veloc1ty by only 8 %.

I As a check, the system was calculated using kinetics proposed by Wen, ¥ which,
jbecause of the assumption of temperature independence above 600 °F, do not predict

as high a reaction rate at the higher temperature as do our kinetics. The results

are also given in Figure 8. Wen's kinetics lead to an estimate of space velocity to
produce 0.1 mole percent CO at 550 °F with a space velocity of 27,000 SCF/CF-hr.
‘Since it is quite probable that Wen interprets a diffusion limitation in the original
experiments as a slow reaction rate, the 27,000 represents a lower bound on estimates
of space velocities based on our original data, Our pilot plant methanation reactors
were designed using a space velocity of less than 5000 SCF/CF-hr. It is possible
.that we can méthanate the entire pilot plant output in two methanation stages.
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NOMENCILATURE

A

L |
o

N N X 3 X

-

surface equilibrium constant!
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