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ANALYTICAL RELATIONSHIPS FOR THE INFLUENCE OF
PARTICLE SIZE ON PRECIPITATOR DESIGN

by
Robert G. Kunz and Owen T, Hanna
Introduction

The realistic design of maﬁy types of particulate coliection devices -
involves consideration of the influence of particlé siée di;tribution. For
an electrostatic precipitator, this influence is appropriately'expressed by
the integration of the Deutsch equation for a loérnormal particié size distri-~
bution. The integral which must be evaluated in such cases depends on several
parameters and cannot be evaluated exactly in terms of elementéry functiong.
A numerical tabuiation of the integral for all parametric Cases.of interest,
while feasible, poses a considerable numerical interpolation problem and is

not very suitable for: computerization.

In order to express the integral simply and accur;tely,_aéymptotic
methods are employed in this paper. These methods producg analytical.
approximations.which-are.expressed in terms of well known functions and the
solution of a certain nonlinear algebraic equation. Results of these
célculgtions are given here in forms suitable for_either_hand or computér
calculations. Comparison with numerical calculations shows that the results
of the asymptotic analysis are applicable for virtuallylall cases of prac&ical

interest.

Electrostatic Prccipitatér Theory

In an eiectrostafic precipitator, suspended dust particles in a
gés are eleétricaliy charged and migraté to‘collecting_sﬁrfaces where they
are captured. A fofce Balance on a single charged particle in a quiescent
gas under the influénée of an electric field produces the following expression

for the particle migration velocity:



- 122 - ‘ ' ; (

: E E d_
w= _0 P P
4Ty 1)
The collection efficiency of a preciéitator in turbulent flow is then given
by the Deutsch equation T .
-Aw/Q .
n=1-e P

.
.

Howeve;, the value of w calculated according to first principles
from eqn. (1) with its underlying simplifying)éssumptions may Be several
times too high because of effects unaécougted for in its derivation; These
‘"include multiple particles, uneven gas distribution, particle reentrainment,
and‘high dust resistivity, as cdmprehensively discussed by White.ll' 12 -
Thereforé, to predict the operation of an actual precipitator, the
theoretical migration velocity is replaced by a precipitat;on rate'coﬁstayt

based on experien_ce.6

Log-Normal Particle Size Distribution

Moreover, the pérticles éncoﬁntered ;n practice are not uniform
in size as we ﬁave,sp far tacitly assumed,-but rather are made up of a
continuous distribution of sizes. Specifically, most powders of industrial
significance are log-normally distributed. Th; frequency of occurrence of
la given diameter particle plqttea against ;he logarithm 6f that size produces
the familiar bell-shaped curve. Alternatively, the logarithm of the particle
diameter (dp).gfaphs as a étraight line against éumulativé weight percent less ‘ (
ﬁhan that éize. An example of the latter plot is shown in Figure 1. 1Two
parameters, the mass median diameter (E}),and the geomgtric standard deviation
(o) completely specify the distribution. The mass median diameter is the

diameter at the 50% point, and o.is given by either of the following ratios:
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A more complete explanation of fine particle statistics is contained else~-

where.5

Collection Efficiency Log-Normal Distribution

By lumping all non-size related quantities into one parameter

k = Eo EE AQv . (3)
e . ) .

eqn. (2) can be written
n = 1-e Kdp ’ ‘ %)

Eqn. (4) is exponential ih character although k, like w, is empirical. This
function, shown in Fig. 2, is an example of the so-called grade efficiency

10

curve discussed by Stairmand.s— 'Typically, larger particles are collected

much more readily than smaller ones.

With the grade-efficiency function defined, the collection efficiency
for each individual particlevsize in the distribution is completely'defermined.
The overall efficiency of collection (n) is obtained by sqmming up these
individual contributions ’

2 bt
—ae

1 A -
e dt &

where a = kEp and b = ¢n ¢

N

Although attention has been focused on electrostatic precipitators,
the technique to be outlined below applies as well to other types of

particulate collection devices whose grade-efficiency curves can be approximated
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by eqn. (4). Typical grade-efficiencies replotted on semi-logarithmic
coordinates from Stairmand's.tabulations and curves are shown in Fig. 3
- for several such devices. Increasingly efficient collection is reflected

by a larger value of k.

Numerical Integration

The integral of eqn. (5) can be éompufed direétly by numerical
quadrature,.fésultiﬁg ln the cﬁrfes presented in'Fig{ 4. :For'some pufposes,
these curves will be entirely satisfactdry{ More than likely, however,
collection efficiency will be desired for a set of inpug parameters 5
and b. not corresponding e*actly to any of these curves, requiring eiﬁhe; an
interpolation or a .complete numerical re-evaluaFion of the integral. 1In
other}words,_thg functional dependence of the eff;ciency on the input
parameters is not shown exﬁlicitly: Fo;zthis reason, simple and accurate

analytical approximations for this integral have been developed.
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Approximate Representation of j;? _/‘ e ?
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This infinite integral is seen to converge for all values of

-2 and b. The integrand -~ O for both t + —» and t + = and thus, £ince the
integrand is always p;sitive, it must have a maximum Qalue at some point
t*. At the maximﬁm point t*, the usual éoﬁdition for an interior maximum
requires that

tx + abe’™ =0 | , (6)
It is easily ygrified that there can_be bu; one maximum‘point t* for any
.glven set of values of a and b. Thus. t#* depends on both ; and b. Howeyer,

RV 1/

by changing the variables to t* = u* and C = a 2 b, eqn. (6) is reduced

-to a form involving the single parameter C as follows:
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ur + ce®* = 0 &)

Since the integrand involves exponentials, it is natural to hope
that by investigating the maximum of the integrand and suitably changing
variables, the original integral might be transfofmed to one of the
Laplace type, which could then be evaluated approximately for certain limit-
ing values of a or b.2 However, in this problem a transformation of this
type doeg not yield the desired Laplace integral, but the transformation is
nevertheless extremely useful since it does lead ultimately to a resolution

of the original problem.

Some details of the analysis involved in approximating the integral
are given in the appendix for the reader who is interested. Here we will
present the essential results of the analysis. First we note that the
approximation formulas depend on the solution of nonlinear eqn. (7). The
solution of this equation is indicated graphically in Fig. 5. Approximate
analytical solutions of this equation accurate to better than 5% are developed
in Appendix I. These approximations may be used directly, or, if more
accuracy is desired, they may be used as first guesses for iteration schemes
that are also outlined in this appendix. This approach is very attractive

for use on the digital computer.

The most useful approximation of the original integral I is as

follows:

-a%p?

[ 2€ 2 (a~ @, a~0,b 0 (8)
(14ap2y172
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The quantity A in eqn. (8) is related to the solution of nonlihear eqn. (7)
since Ab2 = -Cu* and the solution of eqn. (7) is expressed in terms of this

quantity.

Eqn. (8) is a simple expression which approximates thevorigina}
integral very well, as shown. in Table 1. In Appendix II, it ié p;oved that
eqn. (8) is valid in the limit of either a + », a + 0, or b + 0. The fact
that eqn. (8) applies for so many limiting cases gives some'réason for its
excellent agreemént with numerical results over such a wide range of a and
b values. Except for the impractical case of large>b(log—normal probabilicy
particle size distribution'approaching a vertical line), the approximation

would produce results coincident with the curves of Fig. 4.

Eqn. (8) rgpresents the firét approximation of an asymptotic
expansion for the limiting cases duoted, and it is generally pbssible.to
increase the accuracy of the approximation by adding in some correction terms.
However, adding:only the next uniformly valiq éontribution for a + 0, a > «,

b + 0 causes the formula to become very much more complicated. Moreover,
the comparison between eqn. (8) and the numerical results shown in Table 1

indicates that correction terms are not really necessary.

Although eqn. (8) seems to represent an appropriate approximation ' f
tp Ehe original integral I for current needs, it is difficult to anticipate /
whether some cases that seem unimportant now wiil prove.to be significant
at a later time. For thisﬁreason and for the'sakééof completeness, certain

other approximations to I are given in Appendix IIT,
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Approximate Representation of /;? J[ e 2 dt = J

'precipitator, and the calculation repeated.

Frequently an estimate of the particle size distribution of the
uncollected material is required in addition to aﬁ overall efficiency prediction.
This would be important where several collecting devices are to be installed in
series. For example, it is not uncommon for cyclones to be installed upstream
of a precipitator. In this case, the quantity and distribution of the

particulates escaping from the cyclones would be used as the feed to the

To calculate the particle size distribution, it is desirable to
approximate the above integral where z = ln(dpfgp)/b is now a parameter in
additibn to a and b. It appears possibie»to do this in a manner anaiogous
to that for the previous case (é + ), Again, the details are indicated in

the appendix (Appendix IV). The result is
2

=z" _ E + (z+Eb) -
2
(z<t¥) & 1/22(l+b ® f (9
- (1+b %g) L = _ZHbE
2172 (14125 112
where E = a e+bz.
Eqn. (9) holds only for z<t*. For z>t*, we have instead
-Z2 +bE)
—— - E+ LE____ o 2
(2>t*) . - J =1 - —T'e—'—__T’(l-Fb E) j
(1+b E) o = Z¥BE (10)
1/2(1+b E)l/?
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The approximatioﬁ given for J in eqns. (9) and (10) involve the well knowﬁ
érror function which is widely tabulated and for which there are simple
Acomputer approximations.l Formulas (9) and (10) are shown in example 1

following to approximate well to the integral J.

.

Typical Applications of the Results o " l .

The above functions prdvide an analytical tool to evaluvate the
effect oé inlet particule size distribution on collection efficiency at
iconstant precipitator flow and field conditions. This treatment iS'interﬁediate
. between: the simplified Deutsch equation based on a uniform particle size,

eqn.v(2), and a detailed systens analysis.6 The use of these aSymthtic ) i

relationships will be demonstrated in the numerical examples given below.

Example 1

Problem:

. Compute the overall efficiency of the precipitator whose g?ade—
efficiency curve is given in Fig. 2 operating on the inlet dust distribution
shown in Fié. 1. Evaluate the particle size distribution of the uncollected
materia1.> 4 - | . ' .
.Solution:
By reflotting Fig. 2 on semi-logarithmic coordinates as in Fig. 3

: and determining the slope, onme finds k = 0.46 reciprocal microns. From Fig. 1,

E; = 12 microns and ¢ = 2.8. Therefore, a =’k5b = 5.52, b= 2n o= 1.03, and /{
¢ =al’% = 2.42. From Fig. 5, AbZ = 1.42 giving A = 1.34. From eqn. (8), -
-4%b2-A ‘
e 2 ' .
n=1- _m =1 - 0.0654 = 93.4% . ’ (
(1+Ab ) (rounded down) S ‘ '
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A refinement of these calculations including a computer solution of eqn. (7)
gives an efficiency of 1-0.065436 compared to the above figure. An efficiency
of 1-0.065370 is obtained by direct numerical integration of eqn. (5).

Agreement of these results is excellent.

The particle size distribution in terms of the fraction lost
below a given size can be found by considering the integr;1 J with upper
limit given by z = 2n (dpfap)/b. J can be approximated by eqns. (9) or (10)
depending upon the value of z. To obtain the cumulative particle size
distribution, J must be divided by I, the infinite integral. The results
of these calculations, set forth in Table 2, show quite good agreement for

this example.

In addition, the preceding calculations can be compared with a
more commonly- employed method. The inlet dust distribution is broken up
into a finite number of narrow size ranges, the amount collected for each
range is determined, and these valués are summed to find the overall collection
efficiency.. An example of this procedure is given by Stairmand.s’ 10 The
calculations are summarized in Table 3. The oyerall collection efficiency
.is again 93.47%. The distribution of escaping material is slightly finer
than the distribution obtained by direct numerical integration of the function
1, shown previously in Table 2. The "exact" pumerical integration distributionm,

with Ep of 2.7 microns and ¢ of 1.9, lies between this approximate distribution

and the one obtained using the asymptotic expressions.
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For this illustrative calcﬁlation, entries in Tablé 3 correspond-
ing to the inlet particle size and collection efficiency have been computed
from the appropriate functional forms rather than graphically as might normally
be done for a routine calculation. The differences in efkiciency and distri-
bution areltﬁerefore caused only from taking a séries of finite intervals
in which the collection efficiency is assumed té be conétant at its midpoint

value.

In this example, the asymptotic analytical expréssions derived
in this paper have been shown to produce an overall efficiency equivalent
to that obtained from direct numericéal integration and a commonly employed
approximate technique. In addition, the particle size distributions of all
three methods are roughly compa;able,'wifh differences of-thg order of
a few percent. The asymﬁtotic functions are especiallf attractive for
hand calculations when only the overall efficiency is desired. When‘a complete
particle size distributioﬁ is required, the calculations involving eqrs. (9)
and (10) are more tedious than the method outlined by Stairmand, which would
probably be used. When computer facilities are available, the asymptotic
functions represent a savings invcomputer time over a standard numerical

quadrature and are expected to require about the same order of magnitude

of time as that used by the Stairmand type of calculation. -

Example 2

Problem:

To increase collection efficiency, the precipitator of example 1
is to be doubled in size by increasing the lehgth of its élates in the
direction of gas flow. Calculate the new efficiency accounting for particle

-size distribution and by-using the simplifiea Deutsch equation.




- 131 -

Sqlution:

To account for a change in-plate length, oné must vary k which
is directly propor tional to this dimension. In example 1, the parameters
of the inlet dust and k = 0.46. led to an efficiency of 93.4%. When the
size is dousled,_k becomes 0.96 and the computation proceeds in a similar

manner, giving an efficiency of 97.9%.

This calculation can be compared to an entirely différent
technique. As ig sometimes done, eqn. (2), the simplified Deutsch équation
for a monodisperse particulate, can be empioyed and thereby circumvent the‘
use of an integral and all the difficulties involved in its evaluation. In
this précedure, the observed 93.47% efficiency can be used to fix the value
of the argumenf of the exponential at 2.7. Doubling the plate length.makes
this parameter 5.4 and gives an efficiency of 99.5%. _Althougﬁ.thc two

efficiencies, 97.9% and 99.5%, appear close, the loss rates differ signifi-

cantly by a factor of 4.

The efficiency as a function of length is plotted in Fig. 6.
The asymptotic expression gives the efficiency shown by the solid curve,
while the simplified Deutsch equation produces the broken line. The two

provide equivalent results only in the vicinity of 93.4% efficiency where

the Deutsch equation exponent was fitted.

Thus, the Deutsch equation predicts a greater éfficiency at a
given increment in length or a shorter additional length required to achieve

a given increase in efficiency. This is the same scrt of behavior demonstrated
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Solution:

| . To account for a change in plate leegth, ene must vary k which
is directly proportional to this dimension. In example 1, the parameters
of the inlet dust and k = 0.46 led to an efficiency of 93.4%. VWhen the
size is doubled "k becomes 0.96 and the computation proceeds in a similar

manner, giving an efficiency of 97. 91

This calculation can be compared to an encirely different-
technique. As is sometimes done, eqn. (25, the simplified Deutsch.equation
for a monodisperse particulate, can be emﬁloyed and thereby circumvent the
use of_an integral and all the difficulties involved in its evaluation. In
this pfocedute, the observed 93.4% efficiency can be used to fix the value
of the argument of the exponential at' 2.7. Doubling the piate length makes
.this parameter 5.4 and gives an efficiency of 99.5%. Alchough the two

effic1encies, 97.97% and 99. SZ, appear close, the loss rates differ signifi—

cantly by a factor of 4.

‘The efficiency as a function of lengtﬁ is piotted in Fig. 6.
The asymptotic expression gives the efficiency‘shown by the‘solid curve,
"while the simplified Deutsch equation prodﬁces the broken line. The two
provide equivalent results only in the vicinity of 93.4% efficiency where

the Deutsch equation exponent was fitted.

Thus, the Deutsch equation predicts a greater efficiency at a
given increment in length or a shorter additional length required to achieve

a given increase in efficiency. This is the same sort of behavior demonstrated




133 -

0SL€°0
8LLE°0
808€°0
8e°0

LL8E°0

L16e’0
296€°0
€10%°0
TL%°o
€viveo
622770
17€%°0
00§%°0
€LLY 0
0000°1

*3up Cwny

9L1€"0 1801°0
S0ZE'0 911D
96260 881170

69260 692170

LOEE’0 .  6%€1°0
6%€€°0 710
L6EE°0 6%51°0
1$%€°0 849170
S1SE°0 SEST O
€65¢°0 TL0Z°0
069€°0 882z 0
8180 €792°0
600%°0 $81E°0

65E€%°0 961%°0
10000°1 0000°1.

*x01ddy *3jup ‘wny

9s01°0
1o
LT
mwetro
tzeno
2o
0261°0
8%91°0
%081°0
1002°0
6S2Z°0
8192°0
€L1e°0
0€ZY'0
0000°1
*xo0xddy

019 ‘9202Z°0 - 9Z0€°Z=q ‘O1=o

%$910°0 6991070
€6810°0 £8810°0

78120°0  9L120°0°

9€520°0  0€520°0
116200 1462070
SESE0°0  825£0°0
€52%0°0 L2900
66150°0 615070
v8990°0  %8%90°0

€6280°0 10€80°0 "

L6010 6601°0
028170 92¢1°0
Teozzo srzzeo
878€°0 768€°0
0000°1 0000°1
*J3ul cwny. *xo0xddy
9860°1=q ‘¢=o

$19200°0
06€€00°0
S9E900°0
0795000
629£00°0
16660070
65€10°0
86810°0
922200
670%0°0
61290°0
1601°0
868170
geco
0000°1
*3ur Cwny

9£9200°0

16£€00°0"

L9€%00°0
$%9500°0
9€%L00°0
296600°0
T19€10°0
20610°0
CELTO0

190%0°0

<0€90°0
9€01°0
L9810
LSLE°D
0000°1
*x01ddy

1£69°0=q ‘z=0

P

ﬂomﬂooooo.b
7€$%00000°0
€1110000°0

164200000

%$890000°0
1Z2L1000°0
SSE%000°0

1111000
8§$8200°0
S19L00°0

1761070

£2150°0
L9€1°0
64970
0000° 1

*ug

*any

z? ”mw .M =1

298100000 °0
9€$%00000°0
€1110000°0
€5420000°0
%$890000°0
12£1000°0
9$€%000°0
11110070
658200°0
91%L00°0
1761070
92150°Q
L9€1°0
6L9€°0
0000°1
*x02ddy

1°0=q ‘Z501°1=0

S1YVAROD

- 1~ )
239 T/
- NOILV¥OAINI TVOT¥INN HIIM GOHLIN A1vId NOuddv J0 NO

1 TiEvl

ST€8000000°0 ' . ST€8000000°0
092200000°'0 0922000000
771900000 °0 71900000 *0

0£910000°0 049100000
0%$%0000°0 0%5%0000°0
%€21000°0 9€21000°0
%S€€000°0 $SEE000°0
81160000 61160000
64%200°0 6L%200°0
8€£900°0 8€£900°0
81070 - 7£810°0
6L6%0°0 6L6%0°0
€SE1°0 £SE1°0
64970 6L9€°0
0000°1 0000°1
*3ul cawny *xo01ddy

0 = 0°Uj=q ‘Ju0

7
€1
4
144
a1

© ~ N Mm@ n O~ ®



COMPARISON OF APPROXIMATE AND NUMERICALLY INTEGRATED UNCOLLECTED

- 134 -

TABLE 2

d icrons
p(m )

-2 - B N - Y I o T

P
o

8

o O O O ©O o o

switch‘from'eqn.

PARTICLE SIZE DISTRIBUTIONS FOR EXAMPLE 1

*
J(approx.')

0.00557
0.
0.
0.
.0537
.0579
.0607
L0624
.0635
L0642
.065436

0209
0347
0471

*In this example, dp &

(9

Cum. Wt.%

8.5
32.0
53.1
72.0
82.1
88.5
92.8
95.4
97.1
98.2

1Q0.

J(numerical)

0.00563
0.0219
0.0372
0.0481
0.0550
0.0592
0.0618
0.0632
0.0641
0.0646
0.065370

Cum.

33.
56.
73.
84,
90.
94,
96.
98,
98.
100.

We.%

L O O L H OO Oy

2.96 corresponds to z=t* and is therefore where we
(10).
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~ 'PARTICLE DIAMETER (MICRONS) -

50

Figure 3
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'Figu.feh
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Notation

A = aeP™ = —cux/bZ = —t*/b

A = area of collection plates

P
b = no
c = a1/2b :
_.dp = particle diameter
Eﬁ = 'maSS'mehian diameter
e = base of natural logarithms
E = aebz
Eo = charging electrical field intgnsity
Ep = célléction electrical field intensity

I = infinite.integral in eqn. (5)

J = integral I with variable upper limit
k = coilectiqn parametér
Q@ = gas volumetric flow

s = variable of integration
t = variable of intégration .

t* = Jocation of maximum point

uk = t*/al/z

L]

w effective migration velocity

z variable upper limit of integral J = ln(dp/ﬁé)/b

Greek Letters
'n = collection efficiency

= gas viscosity

=

. ¢ = . numerical constant

g = geometric standafdvdeviation
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Appendix I

. Cu*
The solution of u* + Ce = 0.

This equation is easily solved numerically by means of a suitaﬁle
interation method if appropriate starting values are used. Sﬁitable
érocedures include the Newton method or the ordinary iteration method
accelerated by means pf the 62 process.4 The latter method was used to
obtain the numerical values shown in Fig. 5 and Tablg A-1. As&mptotic
solutions of the;equation were used to.yield reasonable starting values.

The two asymptotic solutions for ~Cu* = Ab2 are .

2 2 :
cl(c) = ZQ__L%i%_lZ_ c > 0) . . (Al-1)
2(1+Cc")°-C
. and
GZ(C) = 22n C ~ &n(24n C) (C » =) . . (A1-2)
These two asymptotes are compared with the numerical values in.Table A-1. ) ‘

Since the 'C— « golution, eqn. (Al-2) ihvolves a logarithmic scale, it only
becomes accurate at extremely 1aige (and impractical) values of C. ﬂowever, l

it was observed that the difference between the numerical values and eqn.

(Al-2) is nearly constant for C > 2.5,and thus in the table values of GZ(C)+0'3

‘are seen to yleld accurate results for C > 2.5, ‘

The asymptotic solutions gi§eﬁ above are very useful in the asymptotic

analysis of the integral I. Eqns. (Al-1) and (Al-2) show the asymptotic ;

behavior of the quantity A with respect to a and b. For a or b > 0, A+ a

and for a ~ «, A > 2 Rngallzb) .
. ’ 2

~—




(9]

wvw

OB WNONEFEOOOO
w

10
20

1000
10,000

- 15 -

TABLE A-1

COMPARISON OF NUMERICAL AND ASYMPTOTIC SOLUTIONS OF EQN. (7)

Numerical

-Cux*

0
0.
0.
0.
0.
1.
1.
1.
2.
2.
2.
3.
3.
4.
11.
15.

Gy

: Asymptotic
= m? 6,0 6,(0) 6,(€) +0.3
0
0099 0.0099
0828 0.0828
2039 0.2040
5671 0.5614
202 1.176 1.060 1.360
456 1.372 1.227 1.527
679 1.513 1.410 1.710
053 1.753 2.053
360 2.050 2,350
620 2.307 2.607
045 2.734 3.034
386 . 3.078 3.378
490 4.201 4.501
38 11.19 11.49
67 15.51
2,2
(© = 2D 5 6 () = 220 € - w20 ©
2(1+¢%) %-c
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Appendix II1

w —t? _ _ bt
Evaluation of — 2
dt = 1
¢4 ) j -

. © .tk
We proceed by splitting the integral by means of j =J‘ +_f where t*

-0 -0

*

is the solution of eqn. (6). Thus I = Il+12 where Il " and I, = f .
t*

Lo
First consider 12', which turns out to be much easier to analyze than

Il' (It happens that to the first approximation, I1 and I2 are equal). By

translating the origin of coordinates to t* through t-t* = u, we get:

-b A

7 + Abu -aePY
I, = I du ' ' (a2-1)
2

) ,

Nl:

Since r_h.e new integrand, by way of its construction, is a maximum- near u=0,
it is natural to approximate to the integrénd in this vicinity_ in hopes tha.t
though the approxir.nat'ion may no;: be good in other regions,l these regions con-
tribute only a. small part to the integral. The best procedure seems t-o be
the following. Write ]

bu : bzu2 bu b2u2

e =l+bu+2 +g —l—bu—z.

Then expand the exponential in eqn. (A2-1) to get
bZA2

b A
2
e

I, = ——7— ] -(1+b2A)'-L£- bu bzu2
1 (2n)1/2 J;:o 2 [l—A(e -1-bu - T“)] du (A2-2)

where the error incurred by taking 1 for the quantity in square brackets is

negative and less in magnitude than the next term.
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By performing the integration we get

(A2-3)
5242 N 2 .
2 1/2 1/2 2- _2 1/2 2.1/2
1, = e - » 73 _A{<g) o28 .f &S ds _.(%_> b 2_1_575}_;]
(2m) (28) 8/ . : ' 8/ B (29
s=-hb .
'(““Zg)l/z'

vhere g = (1 + bzA)

The error made by approximating the quantity in square brackets by the first
term is negative and less in magnitude. than the next term. It is easily shown
eqn. (A2-3) that the relative error assoclated with using just the first term

in square brackets goes to zero for either a -+ 0, a + ©» or b + 0. The

integral I is transformed by means of t*¥ - t = s and becomes

2.2
-b"A 2
2 - Av ? e -Abs—Ae-bs R
1 =£__________j'e 2 . . .
1 /2 ds ‘ (A2-4)

en?t =0

Here again the integrand is approximated near its maximum (s=0) and to a first

approximation for either a + 0, a + ® or b = 0

i S
. e 2 .
L >
1T

However, in the case of Il’ the demonstration of the validity of this result
is much more involved than it was in the case of I2 and the lengfhy details

are omitted.
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Appendix III

PR R
: 1 2
Other Asymptotic Expansions to I = ——=:> s e dt
1/2
(2n)"' " ==
For b > », I » 1/2 in accordance with
1 2 e
I=1/2 + Rl, lRll < J2q max [‘E', a—] (A3Tl)

Note the curQe for b=25 of Fig. 4 is approaching this limit.

. For b - 0 we have .
o -a%? /bl S _
7 A 2 : '
I=e [; - A (e -1/ .. .  (A3-2)

- Eqn. (A3-2) is'useful since it has the property that the error made By taking

the ‘term in square brackets equal to 1 is negative and less in magnitude than

B2
A <e2 —:1).

For a >~ 0 .
b2 2 5 9 ~
11 2 - 2 2b 32 : . :
I*ii) -1)a’e 2 a“e a’e
& e =lae’ AT o TR (A3-3)

This serles diverges for any b > 0, but it is asymptotic in the sense that
the error is of the same sign as the first neglected term and less than it
in magnitude. Therefore, the series is of use computationally for sufficiently

small values of a.
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Appendix IV

k4 "tz —aebt

1 .
Evaluation of o )1/2 .I dt = 1

It is convenient to consider separately the cases z < t* and z > t*.

.For z < t*, the maximum of the integrand is at z and accordingly we move the

.

origin of coordinates to z and approximate to the integrand in this vicinity.

Thug J becomes

=2* w? .
2 © — -bw ' ) .
J = =& . ezw - 2 -/Ee dw . ) (A4~1)
(2n )1/2 :
w=0 : _ ‘ -
vhere E = aebz

By approximating the exponmential near ©w = 0, we get

:E—~-E (bE+z)2' w
2 . aq+b2E) [ 82 :
J 2 173 77 © e  ds ‘ (z<t*) (A4-2)
() (4 E) ) - (bE+z
212 (14p25y1/2

‘The 1ntegral appearing in eqn. (A4-2) is just the complementary error ‘function

which is w1dely tabulated and for which there are simple computer approxlmatlons

. o o
For z > t*, it is convenient to calculate J by means of K = I - S
-0

Then an approximation of the type dlscussed in the previous paragraph gives

> (bE+z)2 ©
.2 ~F 2an’n | -s? w
J=:1 T i72,,,0012 J bz (z>t*) (A4-3)
(1+p%B) =17 172
212 (14p%)

Note that for z = t* the sum of the approximations tpf and f just adds’
o z

up fo the approximation given fot‘ji

-0



