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INTRODUCTION 

It is helpful  when attempting t o  understand r e a c t i v i t y  of coa l  chars  to  draw on 
what is known about gas-solid in te rac t ion  from voluminous s t u d i e s  on both t h e  g a s i f i -  
ca t ion  of more c r y s t a l l i n e  carbons and heterogeneous ca ta lys i s .  Rates of gas i f ica t ion  
of porous carbons are pr imari ly  affected by three  parameters: a c t i v e  s i te  concen- 
t r a t i o n ;  a c c e s s i b i l i t y  of t h e  reac tan t  gas i n t o  t h e  i n t e r n a l  a rea  of the  char and, 
hence, t o  ac t ive  sites; and presence of c a t a l y s t s  which a r e  a c t i v e  f o r  t h e  d issoc ia t ion  
of molecular species  i n t o  reac t ive  oxygen atoms o r  hydrogen atoms (1,Z). Following a 
discussion of these parameters, r e a c t i v i t i e s  t o  a i r  and C02 of s ix teen  chars  produced 
from coals  of varying rank w i l l  be considered. 

THEORETICAL CONSIDERATIONS 

It is well t o  review b r i e f l y  the  s t r u c t u r e  and thermal behavior of coa ls  insofar  
a s  they w i l l  determine whether a char is produced from coal  and what physical  
c h a r a c t e r i s t i c s  t h e  char w i l l  possess. 
have been conducted on coal; and even though there  is not today complete agreement on 
the "building blocks" which make up coal ,  w e  w i l l  take a pos i t ion .  
based primarily on the de ta i led  x-ray s tudies  of Cartz and Hirsch (3). 

Coals a r e  composed of aromatic and hydroaromatic layers ,  terminated a t  t h e i r  
edges by various funct ional  groups and crosslinked by various funct ional  groups. 
average size of t h e  layers  and the  number aligned closely p a r a l l e l  increase with 
increasing rank of coal. 
duces i n t e r n a l  porosi ty  and r e s u l t s  i n  coal  being a microporous material. 
treatment a l l  coals  l o s e  v o l a t i l e  matter, pr imari ly  from t h e  periphery of t h e  layers .  
Further, some coals  sof ten  extensively, form an anisotropic  mesophase, which coalesces 
in to  a coke (4). Other coals ,  upon heat  treatment, do not sof ten  (they behave as 
thermosetting mater ia ls)  and a r e  converted t o  a char. The extent  of sof tening is 
thought t o  be primarily determined by t h e  concentration and thermal s t a b i l i t y  of t h e  
crossl inking groups. 
e s s e n t i a l l y  preserved i n  the char i f  it has not been taken t o  too high a temperature. 
Indeed the  microporosity can become more accessible  t o  reactant  gases because of l o s s  
of v o l a t i l e  matter. However, if t h e  processing temperature is taken too high, micro- 
porosi ty  in the  char is rapidly l o s t .  
crossl inks between planar  regions i n  t h e  char ,  allowing improved alignment of these 
regions with l o s s  of porosi ty  between regions. 
as  being composed of s m a l l  t r igonal ly  bonded planar regions, terminated by markedly 
fewer hetero-atom funct ional  groups than i n  the  o r i g i n a l  coal ,  and s t i l l  containing 
subs tan t ia l  (but somewhat l e s s )  crossl inking than the  o r i g i n a l  coal .  The exact s t r u c t u r e  
of a char produced from a given precursor coa l  can be changed by a l t e r i n g  such var iables  
as: possible coa l  pretreatment ( t o  introduce more c ross l inks) ,  coal  p a r t i c l e  s i z e ,  r a t e  
of heat ing,  maximum temperature and t i m e  a t  maximum temperature, atmosphere and t o t a l  
pressure present during heating. It is with t h i s  background t h a t  t h e  r e a c t i v i t y  of coal  
chars can be considered. 

Extensive x-ray, in f ra red ,  and NMR s tudies  

Our pos i t ion  is 

The 

More or  less poor alignment between packets  of l a y e r s  pro- 
Upon heat 

The micropore s t r u c t u r e  which w a s  i n  t h e  precursor  c o a l  is 

This is a r e s u l t  of t h e  thermal breakage of 

The s t r u c t u r e  of chars  is envisioned 

Active s i t e s  To understand the  k i n e t i c s  of t h e  g a s i f i c a t i o n  of a carbonaceous 
s o l i d ,  a Correct term f o r  the  concentration of sites which can p o t e n t i a l l y  take  par t  in  
the  react ion is needed. Given the  a b i l i t y  t o  measure t o t a l  surface a reas  of s o l i d s  by 
physical adsorption of gases i n  1938, e f f o r t s  w e r e  made t o  c o r r e l a t e  g a s i f i c a t i o n  r a t e s  
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of carbonaceous so l id s  with their  t o t a l  area. These e f f o r t s  were not  successful.  
Final ly ,  i n  1963 Walker and co-workers ( 5 )  showed f o r  t he  C-O2 react ion t h a t  the appro- 
p r i a t e  concentration term w a s  t h a t  given by d i s soc ia t ive  oxygen chemisorption onto 
sites -- t h i s  was a measure of active sites. Later Walker and co-workers (6), Hennig 
(7), and Thomas and Roscoe ( 8 ) ,  showed c l e a r l y  t h a t  t h e  ac t ive  s i tes  involved i n  the 
gas i f i ca t ion  of carbon i n  a t r i g o n a l l y  bonded s o l i d  are those located a t  the periphery 
of l aye r  planes and a t  vacancies and non-basal dis locat ions within layer  planes. In 
t h i s  l i g h t ,  it can be sa id  t h a t  i f  one wishes t o  maximize t h e  r e a c t i v i t y  of coal  chars, 
the average c r y s t a l l i t e  s i z e  should be kept t o  a minimum and the defect concentration 
i n  the  l a y e r  plane kept t o  a maximum. 

Mass transport  l i m i t a t i o n s  Thiele (9),  Zeldowitsch ( l o ) ,  and Wheeler ( l l ) ,  
pioneered the concept t h a t  f o r  a gas in t e rac t ing  with a porous s o l i d  the  a c t i v e  sites 
within the  sol id ,  under some circumstances, may be exposed t o  the  reactant  gas a t  a 
concentration s ign i f i can t ly  lower than its concentration at the surface of t he  so l id .  
This can r e s u l t  i n  t he  " u t i l i z a t i o n  efficiency" of the ac t ive  s i t e s  fo r  gas i f i ca t ion  
becoming <<1. The phenomenon occurs a t  higher gas i f i ca t ion  r a t e s  when a l a r g e  concen- 
t r a t i o n  gradient of reactant between the surface of the s o l i d  and i t s  center  is needed 
t o  supply the gas within the  s o l i d  f o r  reaction. The s i t u a t i o n  has been considered in  
d e t a i l  by Walker and co-workers (1) f o r  the gas i f i ca t ion  of carbon. Figure 1 presents 
an ideal ized Arrhenius p lo t  depict ing the  s i t ua t ion ,  when one considers a half  cylinder 
of porous carbon. In Zone I, t h e  reactant  concentration gradient is neg l ig ib l e  within 
the so l id ;  t he  u t i l i z a t i o n  e f f i c i ency ,  rl, of ac t ive  sites is = 1. With increasing 
temperature and gas i f i ca t ion  rate, rl eventually + 0. 
it is  important t o  l o c a t e  t h e  zone i n  which r eac t ion  is occurring i n  order t ha t  t he  
k i n e t i c s  may be understood. 

In a char gas i f i ca t ion  process,  

Mass transport  l i m i t a t i o n s  are expected t o  vary s ign i f i can t ly  as chars  produced 
from coa l s  of d i f f e ren t  rank are gasif ied.  
tr imodal pore d i s t r ibu t ion ,  w i th  most of the ac t ive  sites located within the  micropores 
which are defined as being less than 12A i n  diameter (12). Walker and co-workers (13) 
have shown t h a t  the rate of gaseous d i f fus ion  within t h e  micropore sys t em is slow and, 
indeed, an  activated process f o r  pores (apertures) less than about 5A. Thus i t  is  
c e r t a i n  t h a t  i f  the  s i t e s  located i n  t h e  micropores a r e  t o  be w e l l  u t i l i z e d  f o r  reaction 
( t h a t  i s  rl + 11, the i n t e r i o r  of t h e  so l id  must have an adequate number of l a rge r ,  
feeder pores off which the micropores connect. 
the mouths of the micropores w i l l  be  reasonably rapid;  and, therefore,  reactant  concen- 
t r a t i o n  a t  the  mouths of t h e  micropores can closely approach the value of reactant 
concentration a t  the e x t e r i o r  p a r t i c l e  surface.  

That is ,  coals and coal  chars have a 

Diffusion through t h e  feeder pores t o  

Walker and co-workers (12) show t h a t  low rank coals  tend t o  have a g rea t e r  
Percentage of t h e i r  t o t a l  pore volume i n  l a rge r  pores than do the higher rank coals.  
Thus, i t  is  expected t h a t  chars  derived from the lower rank coals w i l l  have a l a rge r  
feeder pore system and be less mass t ransport  l imited during t h e i r  gasif icat ion.  

Catalysis  Almost every m e t a l  i n  a reduced and/or oxidized s t a t e  is a ca t a lys t  
f o r  carbon gas i f i ca t ion  (2). Catalyst  a c t i v i t y  va r i e s  between impurit ies and with the i r  
concentration and extent  of dispers ion ( r a t i o  of  atoms i n  t h e  surface t o  t o t a l  atoms). 
Specif ic  ca t a lys t  a c t i v i t y ,  that is a c t i v i t y  per u n i t  ca t a lys t  weight, usual ly  decreases 
as the  amount of ca t a lys t  present  and i t s  particle s i z e  increase (2) .  Therefore, even 
though most of the inorganic impuri t iy  content i n  most coals  is located in the  mineral 
matter,  t h e  possible c a t a l y t i c  a c t i v i t y  of t r a c e  and minor elements (present as 
organo-metallics) cannot be ignored. That is, many of the t r ace  elements are very 
highly dispersed within t h e  c o a l  matrix compared t o  the  extent of mineral matter 
dispersion. 

I n  t h i s  regard t h e  s i t u a t i o n  with l i g n i t i c  chars is most interest ing.  Ligni tes  
have high concentrations of carboxyl groups at  the  edges of t h e i r  layers .  
has occurred i n  nature  with ca t ions  l i k e  calcium replacing a s ign i f i can t  amount of 
hydrogen on the carboxyl groups. 

Ion exchange 

Upon the thermal conversion of l i g n i t e s  t o  chars,  the 

I 
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carboxyl groups decompose deposi t ing l a r g e  amounts of highly dispersed calcium (and 
other  metals) onto the char surface. Probably, as a r e s u l t ,  t h e  r e a c t i v i t y  of chars 
t o  air has  been found t o  c o r r e l a t e  reasonably w e l l  with t h e  amount of calcium present 
(14). 

EXPERIMENTAL 

The coals  used were t h e  same as those used in a previous r e a c t i v i t y  s tudy (14). 
Table 1 presents analyses of t h e  coals. 
for  measuring char r e a c t i v i t y  have been described previously by Jenkins e t  a 1  on t h e i r  
s t u d i e s  i n  a i r  (14). A s m a l l  quant i ty  of coa l  (5-10 mg) w a s  placed on a Cahn Model RG 
Electrobalance of a Fisher  TGA apparatus and heated a t  a rate of 10°C per min t o  
l o O O ° C  in a N2 atmosphere. 
was detectable. 

Methods of char preparat ion and procedures 

Samples were held a t  1000°C un t i l  no f u r t h e r  weight l o s s  

Selected coals  w e r e  t rea ted  with warm 10% HC1 for 48 h r ,  followed by t h e i r  being 
washed with water, dr ied,  and charred. Demineralized samples were prepared by taking 
ac id  washed coals  and t r e a t i n g  them with warm €IF, followed by extensive washing and 
drying pr ior  t o  charring. 

Samples of PSOC 127, a r e l a t i v e l y  unreact ive low v o l a t i l e  coal  char ,  and PSOC 87, 
a highly react ive l i g n i t e  char, w e r e  chosen f o r  an inves t iga t ion  of the  e f f e c t  of 
p a r t i c l e  s i z e  on r e a c t i v i t y .  
ized coa ls  were studied. Approximately 40 g of each coal  of 40x100 mesh p a r t i c l e  
s i z e  were fur ther  ground using a p e s t l e  and mortar. 
s i f t e d  for 20 min t o  obta in  fodr  cuts :  +loo, 100x150, 200x325, and -325 mesh. Chars 
were prepared and r e a c t i v i t i e s  measured f o r  a l l  cuts .  

Both chars  derived from the  parent coals  and demineral- 

The ground coals  were then hand 

In t h i s  study r e a c t i v i t y  of chars t o  C02  has been measured, with the  object ive of 
comparing r e a c t i v i t i e s  with those measured previously i n  air  (14). 
carbon dioxide reac t ion  is a much slower reac t ion  than t h e  carbon-air reaction ( l ) ,  it 
must be carr ied out at a much higher temperature t o  obtain the same rate as f o r  the 
air reaction. A temperature was se lec ted  a t  which t h e  rate of reac t ion  of t h e  more 
r e a c t i v e  l i g n i t e s  in CO 
Such a temperature was 300°C f o r  the  40x100 mesh coal-derived chars. The use of less 
than 5 mg of char ensured t h a t  the  r e a c t i v i t y  per  u n i t  weight of char was  independent 
of char weight (or bed depth). 

Since t h e  carbon- 

corresponded c lose ly  t o  t h e i r  r e a c t i v i t i e s  i n  t h e  a i r  at  5OO0C 

Following preparat ion of a char at lOOO"C, i t  was  cooled in dry N 
Dry CO was admitted a t  a flow rate of 300cc (NTP) p e r  mznute, and weight 

t o  900°C p r i o r  
t o  react ion.  
of the char was continuously recorded. 
usual ly  go through three  regions of r e a c t i v i t y :  purge and ac t iva t ion ,  l i n e a r  burn-off 
rate, and decreasing bum-off rate. During the  l i n e a r  region t h e  char loses  weight but 
increases  in spec i f ic  surface a rea  because of ac t iva t ion .  This region continues u n t i l  
t h e  s p e c i f i c  surface arPa no longer increases;  t h e  gas i f ica t ion  r a t e  begins decreasing 
and the  t h i r d  region is entered. 
but  in each case the  rate in the  l i n e a r  period is measurable. The l i n e a r  region 
represents  the  maximum rate a t  which chars  gasify.  

As with the  a i r  react ion,  burn-off curves 

The linear region f o r  each coa l  v a r i e s  in durat ion,  

Reac t iv i t ies  of t h e  chars were calculated as follows: 

-1 -1 
R = reac t iv i ty  of the  char (mg h r  mg ) 
W 0 weight of i n i t i a l  char on ash f r e e  b a s i s  ( ) 
dW/dt = change in char weight with t i m e  (mg h r 3 )  
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Figure 2 p l o t s  r e a c t i v i t y  of the  chars versus carbon content of the  parent coals  
f o r  both the  CO and air react ions.  As with the a i r  react ion,  the l i g n i t e s  a r e  the  
most r e a c t i v e  cl?ars and have t h e  widest spread of r e a c t i v i t y  values. Reac t iv i t ies  i n  
COP and a i r  at 9OO0C and 500°C, respect ively,  a r e  c losely s imi la r  for  a l l  chars. The 
lowest r e a c t i v i t y  for both reac t ions  w a s  recorded f o r  a char from LV bituminous coal  
PSOC 127. For the CO reac t ion  t h i s  coa l  was over 150 t i m e s  less reac t ive  than was a 
highly reac t ive  Montana l i g n i t e ,  PSOC 91. This low r e a c t i v i t y  of PSOC 127 char i s  
a t t r i b u t e d  t o  a r e l a t i v e  absence of la rge  (feeder) pores in coal  of t h i s  rank and, 
hence, poor u t i l i z a t i o n  of t h e  surface area in t h e  micropores f o r  react ion.  The high 
r e a c t i v i t y  of the l i g n i t e s  is a t t r i b u t e d ,  a t  l e a s t  i n  p a r t ,  t o  a la rge  percentage o f  
pore volume i n  macro and t r a n s i t i o n a l  pores and, hence, b e t t e r  u t i l i z a t i o n  of t h e  
micropore surface area f o r  react ion.  

RESULTS AND DISCUSSION 

2 

Ash i n  the  coals  was s tudied by Jenkins e t  a 1  (14). The ash was analyzed f o r  K 
plus Na, C a ,  Mg, and Fe. A reasonably good l i n e a r  cor re la t ion  between increasing Ca 
content (up t o  about 7% CaO in the  coal)  and increasing r e a c t i v i t y  of the  chars in 
a i r  or CO w a s  found. 
cor re la t ions  were found f o r  Fe or fo r  Na plus K. 

React ivi ty  measurements were made i n  CO 
o r i g i n a l  and demineralized samples of PSOC 137 and 87. 
For a l l  samples, a decrease i n  p a r t i c l e  s i z e  r e s u l t s  in an increase in r e a c t i v i t y  
which is an indicat ion t h a t  r e a c t i v i t i e s  a re  in  p a r t  control led by d i f fus iona l  
res i s tance  of CO Whereas reduction i n  p a r t i c l e  
s i z e  of PSOC 87 &om 40x100 t o  200x325 mesh r e s u l t s  i n  a r e a c t i v i t y  increase of only 
2.7 fold,  a similar p a r t i c l e  s i z e  reduction of PSOC 127 results i n  a r e a c t i v i t y  increase 
of 35 fo ld .  
on increasing r e a c t i v i t y  i s  as expected s ince t h i s  char, produced from a low v o l a t i l e  
coal ,  presents  a high r e s i s t a n c e  t o  the i n t e r n a l  d i f fus ion  of reactant  gases. 

A similar cor re la t ion  fo r  Mg was found up t o  about 1% MgO. No 2 

on four p a r t i c l e  s i z e s  of chars  from 
Resul ts  a r e  l i s t e d  i n  Table 2. 

i n t o  t h e  i n t e r i o r  of the  p a r t i c l e s .  

The f a c t  that p a r t i c l e  s i z e  reduction of PSOC 127 has a very marked effect  I 

A 
1 

For each p a r t i c l e  s i z e  s tudied demineralization of PSOC 87 r e s u l t s  i n  a decrease 
in r e a c t i v i t y ,  whereas demineralization of PSOC 127 leads t o  an increase i n  reac t iv i ty .  
These r e s u l t s  show the important r o l e s  and balance which c a t a l y s i s  and mass transport  
res i s tance  play in a f f e c t i n g  r e a c t i v i t y  of coal  chars. For PSOC 87, mass t ranspor t  
res i s tance  is a t  a minimum s ince  l i g n i t e k  and t h e i r  chars possess s i g n i f i c a n t  macro 
and t r a n s i t i o n a l  (feeder) porosi ty .  Introduction of addi t iona l  feeder porosi ty  by 
mineral matter removal r e s u l t s  i n  decreasing mass t ranspor t  res i s tance  r e l a t i v e l y  l i t t l e  
compared t o  the e f f e c t  of mineral matter removal on decreasing c a t a l y t i c  a c t i v i t y  fo r  
gas i f ica t ion .  
removal of mineral matter results i n  a dramatic increase i n  t h i s  porosi ty  and, hence, 
a s u b s t a n t i a l  decrease in mass t ranspor t  control  of gas i f ica t ion .  
decrease i n  mass t ranspor t  res i s tance  more than o f f s e t s  the  l o s s  of c a t a l y t i c  a c t i v i t y  
due t o  mineral matter removal. 

By cont ras t ,  s ince  PSOC 127  has l i t t l e  macro and t r a n s i t i o n a l  porosi ty ,  

In t h i s  case the 

Thus r e a c t i v i t y  of chars which d i f f e r  by more than 100 times can be brought 
increasingly closer  together  by reduction in t h e i r  p a r t i c l e  s i z e  and/or acid treatment 
of t h e  parent coal. Undoubtedly other  approaches a r e  ava i lab le  t o  modify r e a c t i v i t i e s  
of chars. Some of these a r e  being studied a t  present .  
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