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Candidate solids for absorption of hydrogen sulfide from a fuel
gas at elevated pressure are the composite of iron oxide and fly ash
developed by the U.S. Bureau of Mines (1), fully-calcined dolomite
(2-4), and half-calcined dolomite (2,5).

Half-calcined dolomite absorbs hydrogen sulfide by the reaction:

[CaCO3+MgO] + H,S = [cas+Mgo] + H,0 + Co,
For a given fuel gas at a given pressure,. desulfurization by this
reaction is best accomplished at a temperature just a bit below the
temperature at which calcium carbonate would decompose at the par-
tial pressure of carbon dioxide prevailing in the fuel gas.

Regeneration of the solid absorbent is by the reverse reaction,
preferably conducted at the lowest possible temperature in order to
obtain the highest possible concentration of hydrogen sulfide in the
offgas, facilitating conversion of this species to elemental sulfur
in a subsequent operation.

° Absorption and regeneration cycles at atmospheric pressure and
7507C give the results seen in Figure 1. Although the absorption
reaction is rapid, the regeneration reaction is slow, requiring more
than 1 hour. There is a decline in capacity of the solid to about
23% of the total calcium after 6 cycles.

Cycling trials at elevated pressure have been carried out with a
duPont thermogravimetric analyzer modified for operation at total
pressures up to 30 atmospheres, with high partial pressures of steam,
and with corrosive gases such as hydrogen sulfide. This equipment is
described in reference 6.

In contrast to the results at one atmosphere, cycling at elevated
pressure gives little change in capacity or reactivity beyond the
first several cycles. Figure 2 gives results from 15 cycles carried
out at 300 psig and 731°C. Absorption for 15 minutes was alternated
with regeneration for 10 minutes. .The capacity settles out at 40%.
Figure 3 shows the course of the reactions in the first, 7th, and 15th
cycles, and illustrates our finding that the reaction rates do not
change much with cycling; only capacity changes. The regeneration
reaction at 300 psig is extremely fast, running most of its course in
the order of one minute.

Figure 4 shows 30 cycles with absorption for 19 minutes and re-
generation for 5 minutes at 550 C. The 19 minutes absorption time
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includes 13 minutes at 700°C and 6 minutes cooling time.

Figure 5 shows sulfur capacity versus cycle number for three
runs, and illustrates the decline in capacity with decline in
regeneration temperature.

Figure 6 illustrates the course of reactions in the last
cycle of each of the three cycles plotted in Figure 5. It is
fascinating that the observed reaction rates do not seem much
to depend upon temperature. This suggests that the true rates
are extremely fast, and that the observed rates are controlled
by diffusion.

In the series of runs depicted in Figure 7, we varied the
ratio of steam to carbon dioxide in the regeneration step to see
if this is an important factor in the final capacity of the solid.
It appears from Figure 7 that the capacity suffers at a low ratio
of steam to carbon dioxide, such as 25/75. Above about 50/50, the
ratio does not seem to have much effect. It may be noted that we
have succeeded in a run of 15 cycles with a steam partial pressure
in the vicinity of 19 atmospheres.

The effect of temperature in absorption and regeneration is
shown in Figures 8 and 9. In both figures the duration of the
absorption and regeneration steps are 21 and 4 minutes respectively,
the time required for heating and cooling being included in the
absorption time. Increasing absorption temperatures reduces
capacity. The data in Figure 8 show a "deactivation energy" of
22 kcal/gmole. Capacity increases with regeneration temperature,
but the temperature effect is not as strong as in absorption.

From the data of Figure 9, the "activation" energy is 9 kcal/gmole.

Figure 10 shows the last cycle reaction rates for the four
runs plotted in Figure 8. Figure 1l shows the capacity versus
cycle number for the same runs.

The effect of steam and CO_ level on regeneration rate was
explored in the presence of par%ial pressures of H _ S. Figures 12
and 13 show five regeneration steps for the same stone in which
only the regeneration atmosphere was changed from one cycle to
the next. The sample reactivity was first stabilized by conducting
6 cycles in the same regeneration atmosphere (50% H20, 40% C02,
10% H_). 1In all cases the a sorption conditions wefe unchangéd.
Lower initial rates result from the presence of H_,S as well as
decreased H,0 and CO_ partial pressures. With high CO_ pressures
(Figure 12), increasing the steam partial pressure incfreases the
initial rate and the capacity. The effect is much more dramatic

at low CO2 pressures {(Figure 13).
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The complexities of the kinetic situation illustrated in
Figures 12 and 13 are reminiscent of the "kinetic curiosities"
reported eariler for the absorption reaction (5), and like them,
the new complexities appear to reflect differences in the way in
which crystallites of CaCO, or CaS grow within the solid micro-
structure, Examinations of microstructural properties of solids
arising in this research will be reported elsewhere (7).
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