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ABSTRACT

The chemical states of iron in a Kentucky coal and in the products of its
hydrogenation were determined by MYssbauer spectroscopy. The 1ron in the
coal was present chiefly as pyrite, FeS,. There was, however, evidence for
some non—pyritic iron, most likely preséent as szomolnokite (FeSOA.H 0).

The products from hydrogenation of this coal by the SYNTHOIL process at 723
K and 28 MPa contained all the iron as FeS_ where x = 1.0 to 1.14, There
was no evidence for unreduced FeS, or FeSO:. There was also no evidence for
elemental iron. At the experimengal conditions for hydrogenation of coal in
this work, the reactor gas contained 0.32 percent H,S. Evidently, FeS_ 1s
not reduced to elemental iron in the presence of this concentration of HZS
in the reducing gas.

INTRODUCTION

Iron is a major constituent of the mineral matter in many U. S. Coals (1).

The metal occurs principally as iron pyrite, FeS,, in coal although small
quantities of the element may be present as sulfate, oxide, carbonate or
silicate (2, 3). 1In several Australian brown coals, significant quantities

of iron occur as salts of carboxylic acids (4, 5, 6). An investigation of

iron in coal by MYssbauer spectroscopy was first reported by Lefelhocz et

al. (7). From an examination of seven U. S. coals ranging in rank from lignite
to anthracite, they concluded that, in some coals, iron occurs exclusively

as FeS,, and non-pyrite iron, when present, occurs as Fe(II) in a high-spin
configuration.

The purpose of the present investigation was to determine, by MYssbauer
spectroscopy, the iron compounds in a coal utilized in the SYNTHOIL process
and in the process products. In this process, a feed paste consisting of
pulverized coal in recyecle oil is reacted with hydrogen at 723K (ASOOC)

and 14-28 MPa (2000-4000 psi) in a turbulent-flow reactor packed with
pellets of Co-Mo/SiOZ—Al 03 catalyst. The product stream is cooled and the
gross liquid product] afger separation from gases, 1s centrifuged to remove
the unreacted solids. The centrifuged 1liquid product is a low-sulfur, low-ash
fuel oil a portion of which is used as recycle oll to prepare more feed paste
for continuous process operation (8, 9).
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EXPERIMENTAL

Samples of feed coal, feed paste, gross liquid product, centrifuged

liquid product and centrifuged residue were drawn from a 1/2 ton per day
SYNTHOIL plant currently in operation at the Pittsburgh Energy Research
Center. The basics of the plant and the sampling points are shown in
figure 1. A detailed description of the procedure and precautions required
for obtaining representative samples has been published by Schultz et

al. (10). The origin and analysis of the coal are given in table 1. The
hydrogenation was conducted at 723K and 28MPa.

Samples were placed in circular plastic containers, 25 mm in diameter

and 3 mm deep, for MBssbauer analysis. The contalners were covered

with plastic discs and mounted horizontally in the spectrometer so

that any settling of the solids from the liquid samp§7s was uniform

with respect to the gamma ray beam. The source was Co diffused in Cr.
The MYssbauer spectrometer used was of conventional design (Nuclear Science
Instruments, Inc.*) and the spectra were obtained by transmission. Iron
foill was used for velocity calibration and also provided the reference for
isomer shifts., All spectra were recorded at room temperature (v 300K).

RESULT AND DISCUSSION

The weights of samples, the results of chemical analyses for iron in

each of them and the spectrometer run times are given in table 2.

Isomer shifts, quadrupole splittings, AS's and approximate strengths

of the internal magnetic fields are given in table 3. The literature values
of the MBssbauer parameters for a number of pertinent iron compounds are
presented in table 4.

The MUssbauer spectrum of the feed coal showed two strong peaks with_l
an 1lsomer shift of 0.32 mms and a quadrupole splitting of 0.64 mms .
These values agree well with the isomer shift and quadrupole splitting values
reported in literature for pyrite and marcasite, two naturally occurring
minerals of composition FeS, (7, 13). The MBssbauer parameters for

the two minerals are so simIlar that their spectra cannot be resolved

if both are present., Although MYssbauer analysis 1s unable to distinguish
pyrite from marcasite, petrographic and X-ray diffraction studies have

shown that FeS, in coals 1s generally pyrite (20, 21). Specifically, the FeS
in the present”coal has been shown by Ruch, et al. to be iron pyrite (22).

2

The spectrum of the cpal also showed a single, very weak peak with a
velocity of 2.83 mms relative to the source. This, no doubt, corresponds
to one peak of the doublet for non-pyrite iron reported by Lefelhocz et al.
in several coals (7). They determined an isomer shift of about 1.1 mms~l
(recalcgiated with reference to iron) and a quadrupole splitting of about
2.6 mms ~. Unfortunately, the second peak for non-pyrite iron in our
spectrum is completely obscured by one of the strong pyrite peaks, probably
that with a velocity of 0,22 mms relative to the source, Lefelhocz

et al. concluded that the non-pyrite iron may be organic iron or inorganic
iron as a silicate (7). Montano (27), however, observing similar

*Use of brand name facilitates understanding and does not necessarily imply
endorsement by the U. S. Department of Enmergy.
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1
Table 1. - Analysis of the as-received feed coal

Proxi

mate analysis, (wt. pct.)

Moisture
Volatile matter
Fixed carbon
Ash

Ultimate analysis, (wt. pct.)

Rank:

1A blend from Kentucky seams No. 9, 11, 12 and 13
together; Homestead mine, Western Kentucky.

Hydrogen
Carbon
Nitrogen
Oxygen (By
difference)
Ash
Sulfur
as sulfate

as pyrite
as organic

hvBb

| o
ooy
U= WwPRE

which are mined

The coal was pulverized

to a fineness of 70 percent through 200 mesh, U. S. Standard Sieve,
and 100 percent through 100 mesh.

Iron content

~ T Table 2. - Samples analyzed by Mossbauer spectrometry

Spectrometer

Material Weight (g) (wt. pet.) run time (hr.)
Feed coal 1.24 3.58 113
Feed paste 2.60 1.47 160
Gross liquid product 2.40 1.84 139
Centrifuged liquid

product 2.16 0.55 189
Centrifuged residue 3.20 10.1 ~100
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spectra concluded that the non-pyrite fraction is anhydrous iron (II) sul-
fate FeSO,. But the literature values (28) he quotes for isomer shift and
quadropole splitting are inaccurate, as the experiment was probably in-
advertently performed on FeSO,.H,0. More recent work, using carefully
prepared materials, gave values for FeSO, and FeSO, .H, O as shown in table 4.
Assuming that, in our spectrum, the hidden peak of thé high spin doublet is
directly under the low velocity peak of the pyrite spectrum_gur values for_1
the isomer shift and quadropole splitting would be ~1.3 mms and 2,6 mms ",

respectively, which are in excellent agreement with FeSOA.H 0 as are Montana's

and Lefelhocz's. 2

The spectrum of the feed paste was a composite of the spectra of its
components, namely the feed coal and the recycle oil. The latter, as
explained above, is a portion of the centrifuged liquid product from a
previous batch., For convenience, therefore, the spectrum of the feed
paste will be discussed after discussing the spectrum of the centrifuged
liquid product.

The spectra of the gross liquid product, the centrifuged liquid product

and the centrifuged residue were similar and may be discussed together.

Each of the spectra showegla six-peak pattern with isomer shifts in,the
range of 0.69 to 0.74 mms ~, AS's in the range of 0.00 to 0.69 mms and the
strengths of the internal magnetic fields in the range of 310 to 270 kOe.
The outermost peaks in the spectra of the gross liquid product and the
centrifuged residue showed partial resolution into two subpeaks. The values
of the isomer shifts, the AS's and the strengths of the internal magnetic
fields given in table 3 for these two materials are the values obtained by
using the positions of the outer and inner subpeaks respectively to calculate
the parameters. Hafner and Klavius observed similar fine structures in

the M8ssbauer spectra of two pyrrhotites and used a comparable technique

for data reduction (11). A comparison of the MYssbauer parameters in tables 3

and 4 shows that the gross liquid product, the centrifuged liquid product and
the centrifuged residue contain FeSx where x = 1.0 to 1.14.

In agreement with our findings, Ruch et al. found pyrrhotite in the
centrifuged residue by X-ray diffraction analysis of aliquots drawn from

the samples used in this work (22).

The spectrum of the feed paste had six peaks: two strong peaks corresponding

to the pyrite peaks in the spectrum of the feed coal, and four weak peaks, two

on each side of the strong doublet., The four weak peaks correspond to the
outer four peaks in the size-peak spectrum of the centrifuged liquid product.
The two middle peaks of the centrifuged liquid product are obscured by the
two strong peaks of the pyrite. Clearly the spectrum of the feed paste is a
composite of the spectra of coal and centrifuged liquid product, the compo-
nents of the feed paste.

None of the spectra obtained in this work showed any absorptions other
than those discussed above. We estimate the precision of our measurements
is such that other compounds (for example, those shown in taboe 4 starting
with iron) would have been detected had they been present in significant
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amounts, Elemental iron, Fe,0,, Fe,0,, or a-FeOOH would have been detectable
in any of the materials analyzed if “present in quantities as small as 5% of
the total iron present. In the case of the feed coal, the detection limits
for iron and above oxides would have been even lower and, in addition,

the presence of many of the othercompounds in the lower portion of Table &
would have also been detectable at the 5% level. Possible exceptions are

the iron (III) sulfates, iron (III) acetate and Fe (CO) with detecta-

bility 1limits of the order of 10-20%.

Although the feed coal does contain a small amount of FeS0, .H,0, the quantity
of 1t is too small to account for all the sulfate the coal is known to contain
by conventional analysis (see Table 1). Some of the sulfate is presumably
combined with Ca or some other cation.

The spectra of the gross liquid product, the centrifuged liquid product

and the centrifuged residue showed no evidence for elemental iron. The

absence of iron is significant since Gallo has reported the reduction of
FeS2 to elemental iron by the following successive reactions (23):

500K
Fi?,S2 + H2 —_— FEZS3 + HZS (1)
550K N
FeZS3 + I-I2 ——> FeS + st (ii)
FeS + H2 é)é Fe + HZS (iii)

These results were obtained with gavorranto, a natural pyrite, containing
97.12 percent FeS,. It should be noted that reaction (iii) is reversible
and, therefore, the reduction of FeS to Fe will not be feasible if the
partial pressure of H,S in the reducing gas is above some critical value.
Rosenquist has measured K for reaction (iii) at 723K (24). At 28 MPa
hydrogen pressure, the qulllbrlum H,S pressure is 0.008 percent of the
hydrogen pressure. In the present sgudy, the reactor gas contained
approximately 0.32 percent H,S and, evidently, FeS, was not reduced to
iron in the presence of this concentration of HZS'

In the qualitative agreement with our results, J. T. Richardson has reported
that FeS2 is reduced to Fe S (FeS ) during coal hydrogenation (25).
By theromagnetic analysis of a char %rom a coal liquefaction plant he
concluded that the iron in char was present as a mixture of Fe.S, and
FeS,. The exact composition of the mixture varied with the process
conditions,
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CONCLUSIONS

MYssbauer analysis of a Kentucky coal showed that iron in the coal

was present mainly as FeS,. There was some non-pyritic iron, most likely
present as szomolnokite (¥eSO,*H,0). Products from hydrogenation of

the coal at 723K and 28 ¥Pa contdined FeS_ where x = 1.0 to 1.14. There
was no evidence of elemental iron in the products.
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