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Nuclear magnetic resonance (nmr) i s  playing an increasingly im o r t an t  ro l e  i n  

techniques tha t  a r e  cur ren t ly  being applied t o  fos s i l  fuel characterizations 
u t i l i z e  both the 1H and 1 %  nuclides and can conveniently be divided in to  those 
t h a t  apply t o  l iqu id  samples and those t h a t  apply t o  so l id s .  
contend w i t h  line-broadening influences of dipole-dipole in te rac t ions  and chemical 
s h i f t  anisotropies (espec ia l ly  f o r  carbon) and w i t h  long sp in- la t t ice  relaxation 
times; some recent advances have largely circumvented these problems f o r  13C.14-20 
For l i qu ids ,  rapid i so t ropic  molecular tumbling averages dipolar s p l i t t i n g s  t o  zero 
and the chemical s h i f t  tensor t o  i t s  i so t ropic  average, and gives r i s e  t o  re la t ive ly  
e f f i c i e n t  sp in - l a t t i ce  re laxa t ion  (permitting one t o  reduce the  wait  time between 
pulse r epe t i t i ons ) .  

obtained by modern 1% techniques.14-17 
amplitude of the f r e e  induction decay (FID) following a 90" pulse;  t h i s  amplitude 
is a measure of t h e  organic proton content o f  the sample fo r  o i l  shales and has been 
re la ted  empirically t o  the o i l  y ie ld  one can obtain by r e to r t ing  (Figures 1 and 21.839 

For 13C studies on s o l i d s ,  rapid spinning of the in t ac t  o r  powdered sample 
about an a x i s  making an angle of 54O 4 4 ' ,  the "magic angle" r e l a t i v e  t o  the f i e l d  
a x i s  eliminates broadening due  t o  chemical s h i f t  anistropy.17.19.20 High-power 
1H decoupl ing eliminates broadening due t o  13C-1H dipole-dipole interactions.18 
I f  the  high-power 1H decoupling and 1% resonance a re  carried out under conditions 
obeying the Hartmann-Hahn condi t ion , l8  then the  problem of long 1 %  sp in - l a t t i ce  
re laxa t ion  times can a l so  la rge ly  be overcome. The net r e s u l t  o f  applying these 
techniques to  homogeneous, pure organic so l ids  i s  sharp-line spec t r a ,  reminiscent 
of spectra obtained on analogous l iqu id  samples. For so l id  f o s s i l  f u e l s ,  however, 
the  grea t  complexity of mixtures of c lose ly  re la ted  chemical s t ruc tures  gives r i s e  
t o  resonance "bands", ra ther  broad l i n e s ,  encompassing the  13C resonances of a given 
s t ruc tu ra l  type, e .g . ,  a l i p h a t i c  carbons. While grea te r  s t ruc tura l  de ta i l  may 
sometime be ava i lab le ,  (espec ia l ly  from spectra obtained a t  h i g h  f i e l d  s t r eng th ) ,  
a t  present the g rea t e s t  cur ren t  capabi l i ty  of this approach is a c l ea r  d i s t i nc t ion  
between the resonances o f  aromatic or o l e f in i c  carbons and the a l ipha t i c  carbon 
resonances. Typical spectra a r e  shown in Figures 3 and 4. 

For l iqu id  samples, standard pulse Fourier transform methods'-' a r e  applicable 
t o  both 13C and 1H. 
samples, very complex spectra a r e  usually obtained. 
information can usually be extracted regarding the occurrence of spec i f i c  s t ruc tura l  
types. 

the  characterization of t h e  organic consti tuents o f  fos s i l  fuels.1- 7 7 The nmr 

For so l id s  one has to  

For so l id  fos s i l  f u e l s ,  a considerable amount of s t ruc tura l  information can be 
Proton experiments on so l id s  determine the 

Because of the grea t  chemical complexity typical of 
Nevertheless, considerable 
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By combining the various techniques described above, a g rea t  deal can be learned 
about a foss i l  fue l  system and the  processes involved i n  typical characterization 
procedures and, more importantly, in i t s  conversion in to  a useable fuel source. We 
have applied the various nmr techniques described above t o  so l id  and l iqu id  samples 
derived from o i l  shale of the  Green River Formation. The purpose was t o  explore 
the potential  app l i cab i l i t y  of nmr methods t o  answer such questions a s :  
f o r  concentrating the kerogen in o i l  sha le  a l t e r  the  d i s t r ibu t ion  of organics in  
kerogen s igni f icant ly?  How s imi la r  a r e  the  kerogen, sha le  o i l  and bitumen derived 
from a spec i f ic  o i l  shale? What, i f  any, types of organic s t ruc tura l  fea tures  are 
present i n  the spent sha le  a f t e r  re tor t ing?  

Using sol id-sample techniques one can determine the  to ta l  organic proton content 
and the aromatic/olefinic and a l ipha t i c  carbon contents of the  raw sha le ,  of the 
so l id  remaining a f t e r  bitumens are ex t rac ted ,  of the  so l id  kerogen concentrate ob- 
tained from the sha le  and of the  residue from re tor ted  shale.  Using standard FT 
techniques for  l i qu ids ,  analogous information and considerably g rea t e r  s t ruc tura l  
de ta i l  can be obtained on the bitumens extracted from the  shale and on the  sha le  o i l  
retorted from the  shale.  Examples of relevant spectra a re  shown i n  Figures 5-8. In 
in te rpre t ing  the  in t ens i t i e s  of t he  resonances of such carbon spec t ra ,  one has t o  pay 
close a t ten t ion  t o  in tens i ty  d i s to r t ions  associated with nuclear Overhauser e f fec ts  
and the dynamics of the cross polarization experiment.20 
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Figures 

Figure 1 .  Proton f r ee  induction decay ( a t  20 MHz) f o r  o i l  shale before and a f t e r  
heating t o  remove f r e e  water (From M i k n i s  e t  a l ,  BuMines Rep. Invest .  
No., 7984 (1974). 

Figure 2 .  Correlation between oroton f r e e  induction decav amDlitude and averaoe 
Fischer assay o i l  y i e lds  (From M i k n i s  and Ne tGl ,  Magnetic Resonant; 
in Colloid and In te r face  Science, H . A .  Resing and C . G .  Wade, Eds. ,  ACS 
Symposium Ser ies ,  3, 182(1976J. 

Figure 3 .  13C nmr spectrum of  Hanna (Wyoming) coa l ,  w i t h  high-power ' H  decoupling, 
cross polarization and magic-angle spinning, obtained a t  15.1 MHz. 530 ppm 
range. Higher sh ie ld ing  on the r i g h t .  

Figure 4. 13C nmr spectrum of Australian o i l  sha le ,  same conditions as  f o r  Figure 3 .  

F i g u r e  5. 13C Fourier transform nmr spectrum of sha le  o i l  re tor ted  from Colorado 
oil  shale of Fig. 7. 530 ppm range. Higher shielding on the r igh t .  

Figure 6 .  13C Fourier transform nmr spectrum of bitumen ( in  CDC13) extracted w i t h  
benzene from Colorado o i l  sha le  of F i g .  7. Same conditions as  f o r  Fig. 5. 

Figure 7. 13C nmr spectrum of raw Colorado o i l  shale.  
3.  

Same conditions as f o r  F i g .  

Figure 8. 13C n m r  spectrum o f  kerogen concentrate obtained from Colorado o i l  shale 
of  Fig. 7. Same conditions as  f o r  F i g .  3. 
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