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I NTROOUCTI ON 

Previous research a t  M.I.T. on r a p i d  coa l  p y r o l y s i s  has d e a l t  w i t h  
the k i n e t i c s  o f  e v o l u t i o n  o f  i n d i v i d u a l  products  as a f u n c t i o n  o f  
temperature, pressure, p a r t i c l e  s i ze ,  r e a c t i v e  gas, and coa l  t ype  (1-5) .  
Since recent  s tud ies  elsewhere have shown t h a t  c e r t a i n  m ine ra l s  o c c u r r i n g  
i n  coal a f f e c t  s i g n i f i c a n t l y  o the r  types o f  coal  conversion reac t i ons ,  
the present study was undertaken t o  determine what e f f e c t s  these m ine ra l s  
may have on r a p i d  coa l  p y r o l y s i s .  T h i s  paper presents  r e s u l t s  on t h e  
pret reatment  o f  coa l  w i t h  c a l c i t e  (CaC03) and l ime  (CaO). These m ine ra l s  
have already been shown t o  i n f l u e n c e  f l u id i zed -bed  p y r o l y s i s  (6), steam 
g a s i f i c a t i o n  (7,8,9), and C02 g a s i f i c a t i o n  ( 1 0 , l l )  o f  coal .  
obta ined w i t h  o the r  m ine ra l  a d d i t i v e s  w i l l  be repo r ted  l a t e r .  

EXPERIMENTAL 

The coal used was a P i t t s b u r g h  No. 8 Seam bituminous coal  (Table 1) 
The n a t i v e  m ine ra l  ma t te r  was 

Resul ts  

ground t o  -270+325 mesh (45-53 pm d ia . ) .  
removed from the sample by e x t r a c t i o n  w i t h  HF and HC1 fo l lowed by 
f l o a t - s i n k  se a ra t i on ,  r e s u l t i n g  i n  a coa l  c o n t a i n i n g  4.3 percent  by 
weight minera? ma t te r ,  most of it p y r i t e .  The demine ra l i za t i on  procedure 
was shown t o  have no e f f e c t  on t h e  subsequent p y r o l y s i s  behavior o f  t h e  
coal  (12) .  
water w i t h  0.1 diameter c a l c i t e  g ra ins  f o r  24 hours and d r i e d  a t  room 
temperature. 
by weight CaC03. 
t r e a t e d  w i t h  CaO, r e s u l t i n g  i n  a sample c o n t a i n i n g  5.9 percent  by weight 
o f  a m ix tu re  c o n s i s t i n g  o f  74 pe rcen t  Ca(OH)2 and 26 percent  CaCO . 
D e t a i l s  of t he  pret reatment  procedures are descr ibed elsewhere (13). 

A f r a c t i o n  of t he  deminera l ized sample was c o - s l u r r i e d  i n  

The r e s u l t i n g  m ine ra l - t rea ted  coa l  conta ined 20.2 pe rcen t  
A second f r a c t i o n  o f  deminera l ized c o a l  was s i m i l a r l y  

The p y r o l y s i s  apparatus (F ig .  1) and procedures have been descr ibed 
p r e v i o u s l y  (2,12,13). B r i e f l y ,  a t h i n  h o r i z o n t a l  l a y e r  o f  coa l  (e15 mg) 
i s  sandwiched between the  fo lds  o f  a 325 US mesh s t a i n l e s s  s t e e l  screen 
he ld  between two e lect rodes i n  e i t h e r  a l eng th  o f  g lass  p ipe  or  a 
s t a i n l e s s  s tee l  pressure vessel. 
hea t ing  the  s,creen. The vessel and i t s  gaseous contents  remain a t  Close 
t o  room temperature throughout ' t h e  run, and thus the  v o l a t i l e s  a re  
quenched almost instantaneously  on escape fran the  coa l  p a r t i c l e s .  The 
e n t i r e  time-temperature h i s t o r y  o f  t h e  sample i s  recorded by use o f  a 
chrcmel-alumel thermocouple ( 7 5  um bead d iameter)  pos i t i oned  w i t h i n  t h e  
f o l d s  of the screen a longside t h e  coal p a r t i c l e s .  Heat t r a n s f e r  
c a l c u l a t i o n s  show t h a t  a t  pressures o f  1 atm and hea t ing  r a t e s  o f  1000 
K / s  o r  less, coal p a r t i c l e s  and thermocouple beads 80 um o r  l ess  i n  
diameter c l o s e l y  f o l l o w  the  temperature o f  t he  screen and are s p a t i a l l y  
i s o t h e m a l .  

The coal  i s  heated by e l e c t r i c a l l y  
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A l l  r e a c t i o n  products  were c o l l e c t e d .  Gases and low b o i l i n g  l i q u i d s  
were trapped on l i p o p h i l i c  sorbents and subsequently analyzed by gas 
chromatography. Char was determined g r a v i m e t r i c a l l y ,  and was f u r t h e r  
cha rac te r i zed  by elemental analys is .  
was c o l l e c t e d  on a f i l t e r  a t  the r e a c t o r  o u t l e t  and by a methylene 
c h l o r i d e  wash o f  t he  r e a c t o r  i n t e r n a l s ,  and i t s  y i e l d  was determined 
g r a v i m e t r i c a l l y .  To ta l  m a t e r i a l  balances u s u a l l y  exceeded 95 percent .  

Tar  ( roan temperature condensib les)  

A l l  runs were performed a t  hea t ing  r a t e s  o f  1000 K / s  w i t h  h o l d i n g  
t imes o f  0 o r  5 s a t  the maximum temperature a t t a i n e d  and c o o l i n g  r a t e s  
o f  about 200 K / s .  
o n l y  to  t h e  parent  sample s ince  the  v o l a t i l e s ,  once formed, r a p i d l y  
escape the  sample and are quenched as mentioned above. 
c a l c i t e - p r e t r e a t e d  samples were heated i n  1 atm He t o  temperatures 
between 800 and 1400 K .  Other deminera l ized as w e l l  as l ime-pret reated 
samples were heated i n  He a t  1 a t m  o r  69 atm t o  temperatures i n  t h e  range 
1050-1300 K .  

RESULTS 

These elements o f  t he  t ime-temperature h i s t o r y  p e r t a i n  

Demineral ized and 

To ta l  y i e l d s  o f  v o l a t i l e  products  from deminera l ized and 
c a l c i t e - p r e t r e a t e d  coa ls  pyro lyzed i n  1 atm He f o r  5 s ho ld ing  t ime runs 
are shown i n  F i g .  2 .  The c a l c i t e - p r e t r e a t e d  sample had lower weight 
losses, and hence h ighe r  char y i e l d s ,  than d id  the  deminera l ized sample. 
Tar y i e l d s  were g r e a t l y  reduced i n  the  presence o f  CaC03, as shown i n  
F ig .  3. The CaC03-pretreated coal  had a h igh  temperature t a r  y i e l d  o f  22 
percent  by  weight  c h m f  coa l ,  as compared w i t h  a y i e l d  o f  30 percent by 
weight dmmf coa l  fran the  deminera l ized sample. Y ie lds o f  l i g h t e r  
hydrocarbons were a l so  reduced i n  the c a l c i t e - p r e t r e a t e d  sample, a l though 
t o  a lesser  e x t e n t  than were y i e l d s  o f  t a r .  
i n  F i g .  4, are t y p i c a l  f o r  those o f  t he  l i g h t  hydrocarbon gases. 
e f f e c t  o f  CaC03 on these products mani fested i t s e l f  on ly  a t  temperatures 
above 1200 K f o r  5 s h o l d i n g  time runs. 

products, y i e l d s  of carbon oxides were s t r o n g l y  enhanced. Carbon 
monoxide y i e l d s ,  shown i n  F i g .  5, were l a r g e r  f o r  t h e  CaCO3-pretreated 
coal than f o r  deminera l ized coal  f o r  a l l  1000 K and h ighe r  runs. A t  t he  
l i m i t  of 1300 K, the y i e l d s  were t h r e e  t imes those from the  demineral ized 
sample. 
i n  F igs .  6 and 7, r e s p e c t i v e l y .  
d m i n e r a l  i zed  and CaC03-pretreated coals ,  uncorrected f o r  m ine ra l  
carbonate decomposit ion. 
CaCO 
weigzt  h m f  coal are shown on the same graphs f o r  comparison. The h igh 
temperature, 5 s ho ld ing  t ime y i e l d s  of CO2 fran c a l c i t e - p r e t r e a t e d  Coal 
are approx imate ly  equal t o  those obta ined f ron  pure c a l c i t e  m ine ra l  under 
the  same cond i t i ons .  For 0 s ho ld ing  t imes o r  low temperatures, however, 
y i e l d s  fran the  CaC0-j p re t rea ted  sample were much h ighe r  than the  
combined y i e l d s  o f  CO2 from separate p y r o l y s i s  o f  deminera l ized coa l  and 
s...8-ab~ .it ~ q u i v a ; r ~ ~ i  cur id i i iuns.  
c a l c i t e - p r e t r e a t e d  coa l  have i n  f a c t  a l ready  reached an asymptote i n  the 
1050-1200 K range, where t h e  r a t e  of C02 e v o l u t i o n  from c a l c i t e  i t s e l f  i s  
a t  i t s  maximm. These r e s u l t s  a l l  seem t o  i n d i c a t e  t h a t  c a l c i t e  i n  the  

The r e s u l t s  f o r  CH4, shown 
The 

While a d d i t i o n  o f  CaC0-j t o  coal  reduced the  y i e l d s  o f  a l l  hydrocarbon 

Yie lds o f  CO2 f o r  both 5 s and 0 s ho ld ing  t ime runs are shown 
These p l o t s  show y i e l d s  o f  CO2 from 

Y ie lds  o f  CO2 f rom p y r o l y s i s  o f  samples o f  pure 
under the  same cond i t i ons  and conver ted t o  a bas i s  o f  percent  by 

--1.-;+- Tne i u p  y i e i d s  i n  5 s runs from 
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Presence of coal decomposes y i e l d i n g  C O z  a t  lower temperatures than i t  
would when pyro lyzed alone. 

are shown i n  F ig .  8. 
H, o r  0 )  i n  the o r i g i n a l  coal sample t h a t  i s  r e t a i n e d  i n  t h e  char. 
fran c a l c i t e - p r e t r e a t e d  coa l  have g rea te r  r e t e n t i o n s  o f  carbon and 
hydrogen, and much lesse r  r e t e n t i o n s  o f  oxygen, than do chars from 
deminera l ized coa l .  

Elemental composit ions o f  chars r e s u l t i n g  from 5 s ho ld ing  t ime runs 
Data are p l o t t e d  as the percent  o f  t h e  element ( c ,  

Chars 

I n  Table 2, y i e l d s  from p y r o l y s i s  o f  CaO-pretreated coa l  a t  1 atm and 
69 atm He are canpared w i t h  those fran deminera l ized coa l  under s i m i l a r  
cond i t i ons .  Since product y i e l d s  are temperature independent f o r  5 s 
h o l d i n g  t ime runs a t  h i g h  temperatures, r e s u l t s  f o r  severa l  runs have 
been grouped toge the r  and repo r ted  by means o f  an average value and a 
standard dev ia t i on .  
on hydrocarbon y i e l d s  a re  s i m i l a r .  
gave a much h ighe r  CO y i e l d  than d i d  the  CaO-pretreated Sample. 

The e f fec ts  of CaO p r e t r e a t i n g  and CaC03 p r e t r e a t i n g  
The CaC03-pretreated sample, however, 

Fewer runs were done a t  69 atm than a t  1 atm, and the standard 
These dev ia t i ons  are thus much l a r g e r  f o r  t he  h i g h  pressure data.  

u n c e r t a i n t i e s  tend t o  reduce the  s i g i f i c a n c e  o f  t he  e f f e c t s  observed f o r  
CaO a d d i t i o n  t o  coa ls  pyro lyzed a t  69 atm. 
ve ry  s i m i l a r  t o  those seen f o r  p y r o l y s i s  a t  1 atm. The e f f e c t  on t a r  o f  
CaO a d d i t i o n  tends t o  be obscured a t  the h ighe r  pressure s ince,  as can be 
seen I n  the tab le ,  increased pressure i t s e l f  leads t o  decreased t a r  
y i e l d s  and hence t o  l ess  oppor tun i t y  f o r  an enhancement o f  t a r  c r a c k i n g  
by CaO. 

These e f f e c t s  are, however, 

D I S C U S S I O N  

The y i e l d s  from coal  samples p r e t r e a t e d  w i t h  c a l c i t e  and those 
p re t rea ted  w i t h  l ime  a re  q u i t e  s i m i l a r .  Th is  i s  c o n s i s t e n t  w i t h  t h e  
i n d i c a t i o n  i n  F igs.  6 and 7 t h a t  f o r  most runs conducted w i t h  c a l c i t e  
p re t rea ted  coal ,  t he  CaCO deranposed t o  CaO. Thus, l ime i s  the  l i k e l y  
a c t i v e  species f o r  t he  e f?ec ts  observed i n  e i t h e r  c o a l .  

Add i t i on  o f  CaC03 t o  coa l  reduces the y i e l d s  o f  a l l  v o l a t i l e  
hydrocarbon products .  
reduced cons ide rab ly  a t  temperatures above 900 K f o r  5 s h o l d i n g  t ime  
runs, w h i l e  y i e l d s  o f  l i g h t e r  products  are reduced t o  a l esse r  ex ten t ,  
and on ly  a t  temperatures above 1200 K .  
c a t a l y s i s  by CaO o f  secondary hydrocarbon crackinglrepolymerization 
reac t i ons ,  a conc lus ion  cons is ten t  w i t h  r e s u l t s  o f  o the r  work. Yeboah 
- a l .  (6 )  showed t h a t  a d d i t i o n  o f  ca l c ined  dolomi te o r  l imestone t o  a 
f l u id i zed -bed  coa l  py ro l yze r  reduces t a r  y i e l d s .  No reduc t i on  i n  l i g h t  
hydrocarbon y i e l d s  was seen, b u t  temperatures i n  t h a t  study d i d  n o t  
exceed 1050 K .  Solano e t  a l .  (14)  showed t h a t  c a l c i t e  promotes CH4 
c r a c k i n  
p a r t i c u y a r l y  a c t i v e  f o r  t h e  c rack ing  o f  s i n g l e - r i n g  aromatic compounds. 
The l a t t e r  r e s u l t  may account f o r  t he  much l a r g e r  reduc t i on  of 
a romat i c - r i ch  l i q u i d s  obta ined by adding c a l c i t e ,  as compared w i t h  t h e  
reduc t i on  o f  l i g h t  a l i p h a t i c  gas products .  
t o  CO as w e l l ,  and thus t h e  amount by which t a r  hydrocarbon c rack ing  
exceeds l i g h t  hydrocarbon gas reduc t i on  i s  unc lear .  Since a l l  v o l a t i l e  

Y ie lds  o f  heavy hydrocarbons such as t a r  are 

These r e s u l t s  p o i n t  t o  a 

t o  char a t  1 2 0 r K T w h i l e  Mead ( 1 5 )  observed t h a t  l ime  i s  

Sane o f  t he  t a r  i s  conver ted 
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hydrocarbon product  y i e l d s  are reduced by CaO, the  r e s u l t i n g  c rack ing  
products must i n  a l l  cases i nc lude  char  and H2. Char y i e l d s  are indeed 
h igher  f o r  the c a l c i t e - p r e t r e a t e d  c o a l  (F ig .  2 ) ,  and carbon and hydrogen 
r e t e n t i o n  i n  t h i s  char  i s  h ighe r  than i t  i s  i n  deminera l ized coa l  ( F i  . 

H i  h temperature H2 y i e l d s  are a l so  h ighe r  f o r  c a l c i t e - p r e t r e a t e i  
; k l s  (?2 ) .  Hydrocarbon y i e l d  reduc t i ons  were almost i d e n t i c a l  f o r  both 
c a l c i t e -  and l ime-p re t rea ted  samples, desp i te  t h e  f a c t  t h a t  t h e  former 
sample had almost f o u r  t imes as much ca l c ium as t h e  l a t t e r .  T h i s  would 
seem t o  p o i n t  t o  t h e  presence o f  a s a t u r a t i o n  e f f e c t  f o r  CaO c a t a l y s i s  o f  
hydrocarbon c r a c k i n g  . 

The C02 e v o l u t i o n  data, shown’ i n  F igs.  6 and 7, seem t o  i n d i c a t e  t h a t  
t h e  presence o f  coal i n  some way ca ta l yzes  the  decomposit ion o f  CaC03 t o  
CaO and Cop.  
s tud ies  d e a l i n g  w i t h  d i f f e r e n t  carbon-carbonate systems. 
pyro lyzed m ix tu res  o f  g raph i te  and a l k a l i n e  e a r t h  carbonates under He and 
cO2 atmospheres i n  a thermograv imetr ic  analyzer .  
m ix tu res  i n  he l ium occurred a t  temperatures much lower than t h e  
decanposi t ion temperature o f  t h e  carbonates alone. 
on the degree o f  weight  l oss  observed, t h a t  t he  carbonates r e a c t  w i t h  
g r a p h i t i c  carbon y i e l d i n g  the  corresponding ox ide  and CO. No ana lys i s  o f  
t h e  e x i t  gas was conducted t o  v e r i f y  t he  p 
(16 )  heated m ix tu res  o f  I l l i n o i s  coa l  and lifC l abe led  K2CO a t  775 K.  
The carbonate deccmposed c a n p l e t e l y  t o  C02 under these cond i t i ons ,  and no 
carbonate carbon was detected as e i t h e r  CO o r  hydrocarbon products .  
decomposit ion temperature of pure K2CO3 i s  w e l l  above 775 K. The authors 
proposed t h a t  a r e a c t i o n  o f  K2CO3 w i t h  t h e  coal forms a su r face  complex 
and C02, a mechanism said t o  generate wel l -d ispersed a c t i v e  s i t e s  f o r  
c a t a l y s i s  of subsequent reac t i ons  of the coal  o r  char. Th i s  hypothes is  
i s  cons i s ten t  w i t h  the d a t a  o f  t he  present  work, a l though the mechanism 
f o r  t h e  apparent s o l i d - s o l i d  r e a c t i o n  i s  no t  y e t  wel l -estab l ished.  One 
p o s s i b i l i t y  m igh t  be the  r e a c t i o n  o f  carbonates w i t h  t h e  pheno l i c  groups 
i n  coal (21 ) .  
t h a t  C02 g a s i f i c a t i o n  r a t e s  of  chars c o r r e l a t e  w i t h  the  cross c o r r e l a t i o n  
of char oxygen and ca lc ium contents, an i n d i c a t i o n  o f  a 
c a l c  i umlcoal -oxygen g a s i f i c a t i o n  s i t e .  

S i m i l a r  r e s u l t s  have been observed i n  two o the r  recen t  
McKee (11) 

Weight loss o f  these 

He postu la ted,  based 

sence o f  CO. Other workers 

The 

T h i s  would agree w i t h  the  f i n d i n g  of Sears gt. (10)  

CaC03-pretreated sampies gave cons ide rab ly  h ighe r  y i e l d s  o f  CO than 
d i d  deminera l ized samples. C02 y i e l d s  from c a l c i t e - p r e t r e a t e d  coals  
a re  always g rea te r  than o r  equal t o  C02 y i e l d s  from c a l c i t e  m ine ra l  a t  
corresponding c o n d i t i o n s ,  and hence t h e  excess CO cannot be expla ined by 
P o s t u l a t i n g  r e a c t i o n s  of carbonate CO2 w i t h  t h e  coal  o r  i t s  v o l a t i l e  
products. 
add i t i on ,  thus r u l i n g  out  steam g a s i f i c a t i o n  as a source o f  t he  excess 
CO. The oxygen i n  t h i s  excess CO i s  t h e r e f o r e  organic  i n  o r i g i n ,  and i s  
der ived f rom oxygen groups t h a t  end up i n  the t a r  and cha r  f r a c t i o n s  i n  
den ice ra l i zed  c o a l  p y r o l y s i s .  Most organic  oxygen i n  b i tuminous coa ls  i s  
phenol ic  (17), and t h i s  phenomenon must t h e r e f o r e  be examined i n  terms o f  
deconposi t ion mechanisms f o r  t h e  pheno l i c  groups i n  coa l .  

obta ined by Cypr \es and co-workers (18,19,20) i n  a study o 
p y r o l y s i s  o f  phenol c reso ls ,  and xy leno ls  us ing  3H- and 1 4 C -  l abe led  
compounds. 
dibenzofuran p l u s  water and Hp. 

H20 y i e l d s  (no t  p l o t t e d )  were a l so  increased by  c a l c i t e  

E ? , i A o n r n  +h.+ - L - - - 7  A_-.- ..... .--..-- * I . Y C  v ~ o ~ ~ ~ ~  I UCLUIO,,UX> a;utiy iwu p a r a i i e i  parnways was 
the r a p i d  

One pathway i s  a condensation o f  two phenol molecules t o  form 

124 



on 

Dibenzofuran i s  i t s e l f  stable a t  temperatures u p  to  1150 K. This 
reaction i s  important a t  low temperatures (920-1020 K )  a t  which phenol 
Jus t  s t a r t s  to decompose, but accounts for  only a small fraction of the 
phenol pyrolysis t h a t  occurs a t  higher temperatures. A t  temperatures 
above 1020 K ,  the major pathway is unimolecular decomposition by way of a 
keto-enol sh i f t  t o  e i the r  H20 and benzene, or t o  CO and  a C -  moiety which 
would then further condense t o  t e t r a l i n ,  naphthalene, and uytimately char.  

The C O  pathway i s  preferred,  the  molar r a t io  o f  CO/H20 generated a t  1120 
K being 1.7/1. 

Assuming t h i s  mechanism f o r  decomposition of phenolic groups i n  coal, 
the e f fec t  of CaC03 addition i s  predictable.  
decomposition t o  C O ,  the keto-enol s h i f t ,  is  a strongly base catalyzed 
reaction and the CaO generated by ca l c i t e  decomposition i s  a strong solid 
base. Calcium carbonate or oxide addition will thus promote the  
decanposition of phenolics t o  CO a t  the expense of t he i r  evaporation as 
components of  t a r ,  o r  t he i r  condensation t o  species such as polycyclic 
furans, which remain in the char. 
also be cracked by CaO, which has been shown t o  strongly catalyze the 
cracking of furan i t s e l f  ( 1 5 ) .  
supported by the resu l t s  in Fig. 8,  which show a much lower retention o f  
oxygen in chars fran calcite-pretreated coal than in chars from 
demineralized coal. 
the small absolute t a r  yields.  

The i n i t i a l  step of t h e  

Any of the l a t t e r  compounds formed may 

These proposed mechanisms are a l l  

Tar oxygen contents could not  be obtained owing to  
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These r e su l t s  seem t o  conf l ic t  with a previous study on fluidized-bed 
pyrolysis of coal ( 6 )  which showed tha t  CO yields fran bituminous coal 
were lower when lime was used as the f lu id iz ing  medium t h a n  when sand was 
used. This apparent discrepancy can be explained by the differing 
conditions present in the two reactors. The temperatures in the 
fluidized bed were below 1050 K ,  where CaC03 rather than CaO i s  the 
stable species. 
a secondary reaction independent of the pyrolysis. 
were reduced t h r o u g h  the  water-gas sh i f t  which was important i n  the 
fluidized bed where the vola t i les  were not  immediately quenched. These 
gas-phase secondary reaction e f fec ts  would mask any ef fec ts  of the lime 
on the pyrolysis i t s e l f .  

Consequently, the lime removed C O 2  fran the gas phase in 
As a resu l t  C O  yields 

T h e  calcite-pretreated sample gave much larger CO yields t h a n  did the 
lime pretreated sample. This behavior can probably b e  explained by the 
f a c t  tha t  there was 3.8 times as much Ca in the former sample as i n  the 
l a t t e r .  
mineral-pretreated sample less the yield from demineralized coal,  i s  4 .4  
times as great for  the calcite-pretreated sample as fo r  the  
lime-pretreated sample. 
CO and Ca content might be due t o  an association of CaO molecules with 
the phenolic groups, e i ther  during pretreatment ( fo r  the lime-pretreated 
coal) or by reaction of CaC03 with the phenolic groups ( fo r  the  
c a1 c i t  e-pr e t r  ea t ed c oa 1 ) . 
CONCLUSIONS 

The excess CO y ie ld ,  t h a t  i s  CO yield fran the  

This almost l inear relationship between excess 

Addition of CaC03 or CaO t o  coal reduces the high temperature yield 
o f  hydrocarbon products and increases the yield- of C O  in rapid coal 
pyrolysis. The former e f fec t  i s  probably a t t r ibu tab le  to lime-catalyzed 
secondary cracking reactions,  while the l a t t e r  r e su l t s  from base 
catalysis of a step in the decanposition of t h e  phenolic groups. 
in the presence of coal decomposes t o  lime and C02 a t  lower temperatures 
t h a n  i t  will  when pyrolyzed alone. 
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TABLE 2 

YIELDS FOR 5 S RUNS IN fie 1050 K - 1300 K 

1 ATM 69 ATM 

DEMIN 

51.3821.13 
30.2451.35 
3 .6250.11 
0.9650.04 
0.7450.03 
0.8950.03 
i. Zb+O. 04 
3.3750.10 
2.4 050.15 
1.03+0.07 
3.0150 .30 

~ 

47.95 
23.67 
2.93 
0.87 
0.73 
0.75 
0.79 
2.23 
3.42 
2.50 

DEMIN 

35.1251.47 
16.7 652 .2 7 
5.79t1.11 
1.12+0.11 
0.83+0.21 
0.67L0.15 
0.6950.19 
2.5050.46 
3.73t0.92 
1.1550. 17 
2.9151.76 

caq 
35.93 
14.03 
5.36 
1.03 
0.73 
0 . 5 8  

0.48 
1.82 
4.36 
2.71 
3.76 
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