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ABSTRACT 

The s tudy  includes determining the  carbon-13 paramagnetical ly reduced 
spin-latt ice relaxation times o f  representat ive hydrocarbon types, o f  a 
model mix tu re  o f  hydrocarbon types  and o f  an aromatic hydrocarbon 
added to  syncrude JP-4 j e t  fuel. The paramagnetic relaxation reagent 
chromium acetylacetonate (CrAcAc) was used in al l  systems. 

The l imi t  o f  solubi l i ty  o f  CrAcAc in 3 ml of j e t  fuel  and 2 ml of  CDC13 
was found to  be approximately 0.07 M. Using th is  concentrat ion, t h e  
I 3 C  spin-latt ice relaxation times (TI) of aromatic compounds range f rom 
0.5 to  0.9 seconds, and f o r  n-alkanes the  range was found t o  be 0.9 to  
1.8 seconds. A concentrat ion o f  0.04 M CrAcAc was used f o r  analyt ical 
anaiysis of average molecular s t ruc tu re  parameters o f  syncrude JP-4 
and four  other j e t  fuels. Th i s  concentrat ion was below t h e  so lub i l i t y  
l imi t  and ye t  does no t  appreciably increase the  TI values o r  the overal l  
experimental time. The mole percent  as determined b y  NMR o f  aroma- 
t i cs  and alkanes fcund in syncrude JP-4 j e t  fuel  was found to  agree 
w i th  mass spectral data. 

INTRODUCTiON 

For several years the  Department o f  Defense in cooperation w i th  t h e  
Department o f  Energy has had research programs aimed a; character iz-  
i ng  and evaluating liquid hydrocarbon fuels obtained from various fossi l  
sources because the  chemical composition o f  a j e t  fue l  affects jet  engine 
performance, power output,  engine l ife, and operation cost. A number 
of techniques have been used w i th  some degree of  success to character-  
ize hydrocarbon fuels. However, most techniques reau i re  a substsnt ia l  
amount of time and requ i re  the  samples to be fract ionated in to  var icus 
hydrocarbon types. 

Carbon-13 and pro ton  nuclear magnetic resonance spectroscopy (NMR) 
can be  rap id  and can be  performed on ei ther t h e  total sample o r  i t s  
fract ions. The technique has Seen used extensively t o  characterize 
var ious fossil fuels in terms o f  average molecular s t ruc tu re  parame- 
t e r ~ ~ - ~ ,  and thus  NMR was chosen t o  characterize samples of je t  fuels. 

%Associated Western Universi t ies facul ty appointee from Eastern Montana 
College, Bi l l ings, Montana 59101 

233 

\ 



To use I3C ef fsc t i ve ly  as an analyt ical technique, t h e  long spin-latt ice 
relaxation times and var iable nuclear Overhauser enhancement factor 
(NOE) f o r  carbon atoms in molecules general ly comprising j e t  fuels must 
be reduced o r  eliminated. 

Spin-latt ice relaxatior; times can b e  reduced, thereby  reducing the 
experimental time, by us ing  relaxat ion  reagent^^-^. Concurrent wi th 
the use of relaxation reagents is the  near elimination of  t he  NOE effect 

resonance peaks w i th  t h e  number o f  carbon atoms. The effects of 
relaxation reagents on  quant i ta t i ve  analysis o f  complex mixtures such as 
petroleum crudes have been conductedlO'" .  T h e  resul ts of these 
studies have shown tha t  relaxat ion reagents a re  necessary fo r  quant i -  \ 

tat ive analyses if t h e  analyses are to  be  performed in a reasonable time. 

In t h i s  investigation, t h e  effects of  t h e  relaxation reagent, chromium 
acetylacetonate (CrAcAc) on the  carbon-I3 relaxat ion times o f  carbon 
atoms in model compounds, a mix tu re  o f  several model compounds, and a 
model compound in je t  fue l  were measured. Concentrat ion levels of  
CrAcAc used in t h e  relaxat ion s tudy  were l imited to  :he solubi l i ty  of  
CrAcAc in j e t  fue l .  From the  knowledge o f  re laxat ion times o f  model 
compounds in the presence of CrAcAc, optimal instrvmental  condit ions I 

were determined. 

which, when present, p revents  d i rec t  correlat ion o f  the  area of  the I 

EXP E R I MENTAL fJ 

Nuclear Maonetic Resonance 

Carbon-I3 spin- lat t ice relaxation times were determined on a Varian 
CFT-20 NMR spectrometer, us ing  t h e  standard inversion-recovery pulse 
sequence, 180°-s-900-T, where T is the  delay time (in seconds) be- 
tween the  pulse sequence and T i s  t he  time (in seconds) between the  
inversion pulse (180O) and t h e  measuring pulse (90'). Relaxation times 
ware calculated us ing  a nonrect i l inear,  two-parameter exponential re -  
gression technique w i th  the  maximum signal ampli tude f i xed .  

A JEOL FX-270 superconduct ing NMR spectrometer was used t o  obtain 
proton and gated pro ton  decoupled carbon-13 spectra used in quant i -  
tat ive analysis o f  m ix tu res  and je t  fuels. Pulse widths o f  8 psec (15 
psec 90') and 5 psec (14 psec = 90') were used f o r  carbon-13 and 
proton spectra, respect ively.  Six seconds was used f o r  t he  pulse delay 
for carbon- I3  spectra and 2.5 seconds f o r  p ro ton  spectra. Broadband 
proton decoupling gated ON during data accjuistion was used fo r  car -  
bon- I3  spectra t o  suppress t h e  nuclear Overhauser effect. 

Sample Source and Preparat ion 

Al l  hydrocarbon solut ions were prepared us ing  reagent-grade compounds r, 

dissolved in CDC13. T h e  relaxat ion measurements were made without 
vacuum degassing o f  t he  samples. The relaxat ion reagent, chromium 
acetylacetonate, was purchased f rom Alpha Products end used as re -  
ceived. Jet fue l  samples were received f rom Wright-Patterson A i r  Force 
Base (WPAFB). Al l  j e t  fue l  samples were prepared us ing  a standard 
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stock solut ion o f  0.1 M CrAcAc in CDC13. Two mi l l i l i ters  o f  t h i s  solu- 
t ion was syr inge p ipet ted i n to  a 5-ml volumetric f lask, and fue l  was 
added to  t h e  5-ml level.  A l l  samples were then f i l t e r e d  v ia  a s y r i n g e  
and 5-p Tef lon mil l ipore f i l t e r  in to  a 10-mm NMR tube.  

RESULTS AND DISCUSSION 

The carbon- I3 spin-latt ice reiaxation times (TI) f o r  organic  compounds 
range general ly from 5 t o  200 seconds. Relaxation times f o r  ipso and 
br idged carbons o f  aromatic hydrocarbons a r s  among t h e  h ighest  ob-  
served. Two methods are  of ten used t o  overcome t h e  problem o f  long 
relaxation times. One method i s  t o  reduce t h e  pulse t o  a value between 
45" and 75O, which in ef fect  reduces t h e  pulse delay time necessary t o  
achieve spin equi l ibr ium. A shor te r  delay t ime allows f o r  faster  pu ls ing  
However, a pu lse less than 90' reduces t h e  signal in tens i ty ,  and t h u s  
more pulses (addit ional time) wi l l  be  necessary t o  achieve the  des i red 
S/N rat io. Optimum parameters o f  pu lse Four ier  t rans form NMR are  
discussed by Becker e t  A second method i s  t h e  addit ion o f  a 
paramagnetic relaxation reagent  t o  t h e  solution. Depending upon t h e  
concentration o f  t h e  relaxation reagent, relaxation times o f  t h e  c r d e r  o f  
100 seconds can b e  reduced t o  a few seconds. Thus ,  s h o r t  pulse delay 
times can b e  used, which in turn allows f o r  shor te r  total time to a- 
chieve the  desired S/N rat io .  T h e  disadvantages o f  us ing  relaxation 
reagents are signal broadening, d i f f icu l t ies associated w i t h  the  removal 
from t h e  s o l u t i m  if recovery of t h e  or ig ina l  solut ion i s  necessary, t h e  
relat ively low so iub i l i ty  o f  the relaxation reagents in organic solutions, 
and the  iower S/N ra t i o  due t o  the  absence o f  t h e  NOE effect. 

T h e  s o l u j i l i t y  l imi t  o f  t h e  relaxation reagent  in a g iven solut ion dictates 
the  maximum amount o f  reduct ion in t h e  observed relaxation time, and 
th i s  in turn determines t h e  overal l  experimental time necessary t o  obta in  
good S/N rat ios f o r  quant i ta t ive analysis. 

The relaxation reagent, chromium acetylacetonate, i s  on ly  pa r t i a l l y  
soluble in a mix tu re  o f  CHCI, and j e t  fuel.  T o  determine the  pulse 
delay time f o r  a 90° pulse (maximum sensi t iv i ty )  necessary to  acqui re 
quanti tat ive resul ts  in t h e  shor test  possible time, t w o  experiments were 
conducted: 1)  t h e  so lub i l i ty  of CrAcAc in a m i x t u r e  o f  CHCI3 and 
syncrude dP-4 j e t  fue l  o f  various rat ios was determined and 2) :he 
maximum molar concentrat ion o f  CrAcAc f o u n d  f o r  t h e  mix tu re  o f  CHCIB 
and j e t  f ue l  in t h e  f i r s t  experiment was used t o  s t u d y  t h e  reduct ion 
effect o f  CrAcAc on t h e  carbon-13 relaxation times o f  model compounds 
o f  the  types  which could be  found in j e t  fue ls .  W i t h  t h i s  information, a 
pulse delay t ime could b e  determined f o r  a g i v e n  ra t i o  of CYC13 and j e t  
fuel which wol;ld g ive  good S/N ra t i o  in t h e  shor test  possible time f o r  
quant i ta t ive determinations. T h e  l imi t  o f  so lub i l i ty  o f  CrAcAc in 3 ml o f  
je t  fue l  and 2 ml o f  CDCl3 was found t o  b e  approximately 0.07 M. 

Relaxation Studies. - Table I l is ts  t h e  l 2 C  spin-!att ice relaxation times 
f o r  (1) t h e  model compounds used in th i s  s tudy ,  (2) a mix tu re  o f  
several model compol;nds, and (3) 2,B-dimethylna hthalene in syncrude 
JP-4 j e t  fue l .  Also included in the  table are t h e  p3C relaxation times o f  
the  carbon atoms in n-hexane and in 2,6-dimethylnaphthalene 5s a 
function o f  t h e  molar i ty  of CrAcAc. Carbon-13 chemical sh i f ts  f o r  t h e  
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model compounds in CDCl3 w i t h  and without t he  addi t ion o f  CrAcAc are 
also l is ted in Table I .  

The relaxation times measured in th i s  s tudy  were determined without 
degassing o f  the  samples. T h e  l i te ra tu re  values o f  t h e  relaxat ion times 
f o r  t h e  carbon atoms in t h e  mcdel compounds were, f o r  t he  most part ,  
determined under  more exact ing condit ions and represent  t h e  longest 
possible relaxation times. 

A survey o f  the  data in Table I indicates tha t  CrAcAc a t  a concentra- 
t ion o f  about 0.073 M reduces a!l 13C relaxation times o f  aromatic com- 
pounds to  values rang ing  f rom 0.5 t o  0.9 seconds. For n-alkanes using 
0.073 M CrAcAc, the  13C re laxat ion times range f rom .9 t o  1.8 seconds. 
CrAcAc has less ef fect  on  alkanes than aromatics, which i s  t o  be  expec- 
ted  because o f  t he  t y p e  o f  bonding orbi ta ls associated w i th  the  two 
classes c f  compounds. 

The concentrat ion ef fects o f  CrAcAc on the  relaxat ion times o f  n-hexane 
arid E,S-dinethylnaphthalene were determined and are shown in F igure  1. 
For comparison, t he  13C relaxat ion time f o r  benzene13 as a func t ion  o f  
the  molar concentrat ion o i  CrAcAc i s  also given in F igure  1 .  It i s  ssen 
from both  Table I and F igure  1 tha t  all relaxation times f o r  aromatic 
carbons as well as the  subs t i tu ted  a lky l  carbons have, in general,  the  
same dependency on the  molar concentrat ion o f  CrAcAc.  Thus, it is 
possible to  establ ish the  pulse delay time (ST,) f o r  any  iven concen- 

t r a .  

Two addit ional experiments were conducted t o  determine whether o r  no t  
the paramagnetically reduced relaxat ion times are  s ign i f i can t ly  d i f fe ren t  
fo r  1) a mix tu re  o f  model compounds and 2) a model compound in syn-  
crude JP-4 j e t  fuel .  Table I l i s ts  the  13C relaxation times observed f o r  
t he  mode! mix tu re  containing n-hexane, l-ethyl-2-methylbenzene, and 
2,6-dimethylnaphtha!ene in CDCI3 and containing 0.072 molar CrAcAc. 
As expected, the  relaxation times f o r  t he  carbon atoms o f  n-hexane and 
2,6-dimethylnaphthalene in t h e  mix tu re  var ied l i t t l e  f rom the  values 
obtained f o r  the  indiv idual  compounds. However, t he  T1 values f o r  
1 -ethyl-Z-methylbenzene appear to be s l igh t ly  h igher  than  expected. 
T h e  dif ferences in TI observed (IO t o  30 percent)  are most l i ke ly  due 
to  differences in CrAcAc concentrzt ion and sample preparat ion.  

T h e  paramagnetically reduced relaxation times f o r  carbon atoms o f  
2,6-dimethylnaphthalene in sync rude  JP-4 j e t  fuel  produced f rom shale 
oi l  d i f fer  only s l igh t ly  (-15 t o  20 percent)  from values obtained f o r  the  
p u r e  compound. Crude shale oi ls contain appreciable amounts o f  f ree  
radicals, and any cont r ibu t ion  o f  t h e  paramagnetic ef fects o f  f ree  rad i -  
cals which may o r  may n o t  ex i s t  in ref ined je t  fuel  on the  I 3 C  relaxa- 
t ion  time o f  2,6-dimethylnaphthalene i s  minimal. 

Quant i tat ive Analysis. - Since shale oi l -der ived j e t  fuels are complex 
mixtures o f  aromatic and al iphat ic compounds, condit ions establ ished f o r  
quant i tat ive NMR were performed on the  prev ious ly  mentioned model 
mix tu re  o f  approximate mole f rac t ion  rat ios o f  0.1 :0.25:0.65 f o r  2,6-di- 
methylnaphthalene, I-ethyl-2-methylbenzene and n-hexane, respect ively.  

t ra t ion  of  CrAcAc necessary to  g ive  quant i tat ive useful  Q C NMR spec- 
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With accurate weighing, t h e  and I 3 C  NMR spectral areas could be 
Predicted by d i rec t  count ing o f  t h e  var ious hydrogens and carbons in 
di f ferent s i te posit ions fo r  t he  th ree  types  o f  molecules comprising the  
mixture.  Th is  mix tu re  was also subjected t o  d i rec t  analysis by bo th  'H 
and 13c NMR spectroscopy. 

Syncrude JP-4 j e t  fuel has been extensively studied previously in th i s  
laboratory by both  NMR and mass-spectral techniques14 and elsewhere 
by NMRIS. The s t ruc tu ra l   parameter^'^ f o r  th is  fue l  are considered to 
be fa i r l y  well known, and therefore quant i tat ive NMR analysis w i th  and 
without CrAcAc under  the  same instrumental  condit ions was used to  
confirm the  appl icabi l i ty  of the  method t o  j e t  fuel  analysis. Table 1 1  
l is ts the  NMR s t ruc tura l  parameters f o r  syncrude JP-4 j e t  fuel  w i th  and 
without CrAcAc. Also l is ted are t h e  mass spectral data f o r  comparison. 
The mass spectral data were obtained using .i modif ied version o f  t he  
ASTM procedure 02781-71 and are in volume percent; whereas the NMR 
data are repor ted  in mole percent.  For aromatic and alkane hydrocar -  
bons, a near ly  ::1 correspondence exists between mole percent and 
volume percent14. The data in Table II shew tha t  t he  j e t  fcz l  sample 
containing CrAcAc gives resul ts tha t  agree closely w i th  mass spectral 
data. Table I l l  l is ts the  NMR s t ruc tu ra l  parameters f o r  f o u r  addit ional 
j e t  fuel  samples. 

CONCLUSIONS 

The l imi t  o f  solubi l i ty  of CrAcAc in 3 ml o f  j e t  fuel  and 2 ml of CDCI, 
was found to  be approximately 0.07 M. Using th i s  concentrat ion, the  
I3C  spin- lat t ice relaxation times (T1) of  aromatic compounds range fieom 
0.5 t o  0.9 seconds, and fo r  n-alkanes the  range was found to  be  0.9 t o  
1.8 seconds. A concentrat ion o f  0.04 M CrAcAc was used fur analyt ical 
analysis o f  average molecular s t ruc tu re  parameters o f  syncrude JP-4 
and four  other j e t  fuels. Th is  concentrat ion was below the  solubi l i ty  
l imit and ye t  does not appreciably increase the  T1 values on the overal l  
experimental Time. The mole percent as determined by NMR o f  aro- 
matics and alkanes found in syncrude JP-4 j e t  fue l  was found to  agree 
w i th  mass spectral data. 
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TABLE !I. - Average molecular s t r u c t u r e  parameters 

j e t  fuel w i t h  and wi thout  CrAcAC 
and mole percent  aromatics and alkanes f o r  syncrude JP-4 

Without W i t h  0.04 M Mass spectrala 
CrAcAc  CrACAc data 

Hydrogen ammat ic i ty  .037 ,045 
Carbon aromatici ty ,108 .113 

Mole percent  aromatics 12.4 11.1 11.4 
F e r i e n t  mono- 12.4 8.8 11.4 
Percent  d i -  .o  2.3 0.0 
Fraction of  subst i tu ted 

Fraction of  unsubst i -  
and br idged carbons .03 .02 

l u t e d  carbons .07 .09 

Mole percent  alkanes 87.6 88.9 88.6 
Fraction o f  n-alkanes .54 .56 
Fract ion o f  branched 

alkanes .46 .44 
CH2/CH3 rat io  1.9 
Carbon chain iength 9.0 

2.1 
8.3 

Total atomic H/C r a t i o  2.02 2.02 
Aromatic i l / C  rat io  .69 .80 

'volume percent  

Alkane H / i  ra t io  2.18 2.17 

TABLE 1 1 1 .  - Average molecular s t r u c t u r e  parameters 
and mole p e r c e n t  ammatics and alkanes l o r  NASA je t  fuelsa 

Mole percent  aromatics 82.3 19.7 45.2 33.4 
P2PCe"t rnono- 69.8 15.0 34.8 25.5 
Percent di- 12.4 4.7 10.4 7.9 
Fract ion of  subst i -  , . 

l u t e d  and b r i d g e d  ' 
carbons .23 .10 .15 .10 

l u t e d  carbons .32 .09 .23 .19 

Fract ion of n-alkanes .30 .46 .40 .37 
Fract ion of  branched 

alkanes .70 .54 .60 .63 

Fract icn of  unsubst i -  

Mole percent  alkanes 17.7 80.4 54.8 66.6 

CHZ/CHI ra t io  .72 1.9 1.8 1.9 
Carbon chain length 11.3 10.0 lG.4 7.6 

Total atcmic H/C rat io  1.38 1.77 1.60 1.68 
Aromatic H/C r a t i o  .58 .47 .60 .65 
Alkane Y/C r a t i o  2.35 2.08 2.23 2.10 

aContains .04 M CrAcAc  
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