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Efficient use of coals as feedstocks and thermal: energy requires
comprehensive understanding of the physical and chemical structure of
the starting materials and the changes wrought in the processing steps.
Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy is
being developedl’2 as a facile, nondistructive, rapid, highly informa-
tive means of measuring and monitoring the chemical structure of coals

Figure 1 shows how well the DRIFT technique can be used to rank
coals with respect to the hydroxyl content and hydrocarbon type and
content for unweathered powders of the greater maturity increasing
from top to bottom. Figure 2 shows the wealth of information as re-
lated to carbonyl content, polynuclear aromaticity and mineral type
and mineral content for the various coal powders and the simulated
end members of the coalification process (cellulosic fibers
and graph ite). Figure 3 is an example where the changes due to
oxidation are readily discerned. This partial oxidation involved loss
of the aliphatic hydrogen (2800-3000 cm-1) and simultaneous carbonyl
formation (1600-1900 cm~') with little or no loss of hydroxyl (3600-
2000 cm'l), aromatic hydrogen (3200-3000 cm‘l), polynuclear carbon
(1650-1550 cm-!), nor polyaromatic hydrogen (900-700 em~Y).  Studies
of catalytic effects due to inorganic constituents are facilitated by
DRIFT as shown in Figure 4 where quantitative measures are obtained for
the amount and nature of argillic components inherent in and/or admixed
with the run of the mine coals.

The DRIFT technigue uses the coal as a solid piece and/or as powder
with no mulling agents (CCl4), support medium (KBr), or other extraneous
materials that can contribute erroneous spectral features and serve as
barriers for in situ reaction studies. Figures 5 and 6 illustrate the
additional information that one can obtain by noting spectral changes
wrought on oxidation. The dehydrogenation process involves oxidation of
only the aliphatic hydrocarbon initially and only at the latter stages
the oxygen attackinvolves unsaturated olefinic and aromatic species
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(3035 ecm~1). Also there is little or no loss of phenolic, carboxyl
alcoholic, etc. entities (3650-2400 em~!) until the later stages of
reaction. Figure 6 shows more details of the oxygen insertion pro-
cess where the initial oxidation forms somewhat isolated carbonyls
(1705 cm-!) with higher degrees of reaction progressively forming
analogs of carboxylic acids (1745 cm-!), acid anhydrides (1775 em-b)
and organic carbonates (1845 cm-!) as a synergetic continum of oxygen
enrichment prior to the final evolution as gaseous carbon dioxide.
Steady state conditions seem to prevail where the process proceeds
continuously at the steady state concentrations noted in the upper
difference spectrum. DRIFT spectroscopy uniquely allows one to moni-
tor the concentration of virtually all of the entities required to
fully elucidate the oxidation mechanism proposed by batch techniques.a’“
Additional details of interpretation and experimental techniques are
given elsewhere.

Mercury porosimetry, vapor sorption, microscopy, and helium
picnometry aid appreciably in our heat and mass transport modelling
under conditions relevant to fluidized bed reactors of the Tennessee
Valley Authority. The original rigid structure of the coal swells
and expands as volatile bubbles grow and flow out of the tarlike mass
where the -3+4 mesh particles are introduced into the hot (1500°F)
reactor. The volatiles burn vigorously and the residual char slowly
burns away to leave residual ash. Data will be given to show the
nature of the porosity (internal/external, open/closed, macro/micro,
etc.) as determined by the various techniques and the relevance to
existing and proposed processes.
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DIFFUSE REFLECTANCE SPECTRA:
O-H AND C-H STRETCH
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Figure 1. Hydrogen stretch region of
DRIFT spectra of; A. cellulosic fibers,
B. Lignite, C. Subbituminous Coal,

D. C-bituminous coal, E. A-bituminous
coal, and F. Graphite. All samples
are equilibrated with 30 ppm moisture
in the argon purge.
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Figure 5. DRIFT Difference Spectra for ca

19 hours continuous oxidation of coal. These
difference spectra show the loss of hydrogen
froT C-H and, in later stages, OH units of
coal.

Figure 4, Correction for Minerals. A. DRIFT
spectrum for powdered coal. B. DRIFT spectrum
of 20% kaolin dispersed in powdered KCl. C.

A-0.7404B for each of the individual 3600 data

points.
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Figure 6. DRIFT Difference Spectra for Carbonyl
Region. The amount and nature of the oxygenated
specie changes markedly. A general increase in
carbonyls is noted and shift to higher frequencies
is evident.
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