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INTRODUCTION

Diffusion into coals is of considerable technological importance since
many coal modification processes, such as direct liquefaction, desulfurization,
demineralization, and chemical modification, involve diffusion of liquids or gasses
into the coal. Additionally, much of the fundamental chemical research on coals
requires diffusion of liquids or dissolved reagents into the coal so that reactions
can occur. Precise interpretation of these experiments often requires an
understanding of the diffusional behavior. The rate that reactants diffuse into the
particles is often a rate-limiting step. The variety of shapes and sizes of
particles in the coal slurry greatly complicates the overall diffusion kinetics, and
unless this heterogeneity is properly taken into account it can lead to erroneous
analyses of the process. There is information in the literature on the diffusive
uptake of fluids by differently shaped single particles for various concentration-
dependent diffusion coefficients (1), and there is some literature on diffusion into
coals (2,3). However, no information concerning the effect of the particle size
distribution on the diffusive uptake of coals in a slurry is available. The
objective of this paper is to determine the range of diffusive uptake behaviors
which can result from the different particle shapes and the particle size
distribution.

Coal samples are commonly prepared by breaking down the coal until it is
below a selected mesh size. This procedure results in a wide distribution of
particle sizes. Sometimes mesh cuts of the coal are taken in which only that coal
which passes through a selected larger mesh size, but not through a selected smaller
mesh size, is utilized. This reduces the breadth of the size distribution, but even
in the limit of an infinitely narrow mesh cut there will still be considerable
variations in the diffusive uptake of the various particles due to the wide range of
shapes that result from the breakdown or fracture process, and also due to the
cracks and heterogeneity of the coal's microstructure.

To assess the effects of the different particle shapes and of the particle
size distribution, we adopted the following strategy. First, since typical

"distributions of particle shapes present in coal samples are unknown, to determine

the range of diffusive uptake behavior caused by having different particle shapes in
the slurry, we calculate diffusive uptakes for both slab-shaped particles (with
infinite height-to-width ratios) and spherical particles. Most other particle
shapes can be considered to be intermediate. between these two shapes, so their
uptakes can be expected to fall in between these two extreme cases. Thus, these
pairs of uptake calculations bracket the range of diffusive uptakes for most
particle shapes, and therefore bracket the uptakes for most distributions of
particle shapes.

To determine the effects of the distribution of particle sizes, for each
particle shape (slab or sphere) we calculate the diffusive uptakes of both a single
particle and a slurry of differently sized particles with that shape. The particle
sfze distribution used was obtained from an experimental study of ball milling of
coal by P. Luckie, et al. at Pennsylvania State University (4). so the distribution
is relevent to actual coal slurries. While these investigators found that there
were some variations in the measured particle size distribution depending on the
experimental conditions, a typical distribution is approximated by
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where W(R)dR is the weight fraction (or volume fraction) of particles whose size R
is between R and R + dR. Ry, of course, gives the upper 1imit on the sizes of the
particles, For spherical particles R is the particle radius. For slab-shaped
particles, R is the half-thickness of the particle. The particle size distribution
given by Eq. 1 is the distribution we use for all slurry calculations in this paper.

Besides the variations in particle shapes and sizes, there are a number of
other factors which complicate diffusion in coal. These factors include the cracks
and holes through the coal, the variety of macerals having different chemical and
physical properties which make up the coal, the heterogeneity of the structure even
within individuat macerals, and the effects of intermaceral interfaces and mineral
matter (5). These heterogeneities of the coal structures will not be explicitly
treated in this paper, but they may cause substantial deviations from the usual
diffusional behavior. The effects of particle shape and particle size distributions
which are treated here should give a qualitative indication of the sorts of
deviations which might result from these heterogeneities.

FORMULATION OF THE MODELS

In this section the diffusion models being considered are discussed
briefly, and the mathematics describing the models is formulated. Two distinct
modes of diffusion are treated, Fickian diffusion (6) and Case II diffusion (7).
Fickian diffusion is the common form of diffusion in which the rate of flow of the
penetrant is related to the concentration gradient by a proportionality factor,
D(c), which is called the diffusion coefficient. For Fickian diffusion, the
concentration c(t,x) of the penetrant within a particle obeys the following
equation:

(2) 2 = (e)¥e
For Fickian diffusion, D is either a constant or is an explicit function of the
concentration c¢. Diffusion coefficients which are non-decreasing functions of
concentration can be expected for the diffusion of most penetrants into coal, so
only these are considered in this paper.

We impose the boundary and initial conditions

c* at the particle's surface

(3.1) c
(3 0 at time t = 0 within the particle.

1
.2) [

Here the (fixed) concentration c* is the concentration of penetrant within the coal
particle which would be in equilibrium with the concentration of penetrant in the
solution; 1i.e., c* is the saturation concentration of the penetrant within the
coal. By using Eq. 3.1, we are assuming that the external surface of the particle
is in equilibrium with the solution. By taking c* to be constant in time, we are
assuming that the slurry is well-stirred and that the depletion of the penetrant in
the solution is negligible. (Maintaining the proper boundary conditions in
experiments we wish to interpret is crucial. For example, a frequent experimental
procedure is to allow a penetrant to diffuse from a liquid resevoir through an inert
gas to reach the particles. However, this procedure generally will not maintain the
boundary condition (Eq. 3.1) sufficiently accurately, which may greatly perturb the
results). The initial condition, Eq. 3.2 simply states that the particles contain
no penetrant at the start of the experiment. Once the penetrant concentration
c(t,x) within a particle has been determined from Eqs. 2, 3.1 and 3.2, the
particle's uptake of penetrant at time t, m(t), is found by integrating over the
particle's volume:

(4) m(t) = gsgc(t,‘t)dv.
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For the conditions of Egs. 3, the uptake will be proportional to vt for a semi-
infinite medium so for any reasonably shaped particle it will be proportional to
v/t at small enough times.

There is an important class of problems which do not involve pure
diffusion, but which are also governed by Eqs. 2-4. If a substance undergoes both
Fickian diffusion and chemical reaction within the particles, and if the reaction
proceeds much more rapidly than the diffusion (so diffusion is the rate-limiting
Etep)é Ehen the diffusive uptake of the substance by a particle is again given by

qs. 2-4,

Among all non-decreasing diffusion coefficients D(c), there are two cases
which represent extremes in the concentration dependence. One extreme case is
simply a constant diffusion coefficient

(5.1) D(c) = Dy for all c.

The other extreme case is found by considering a diffusion coefficient which is zero
up to nearly the saturation concentration c*, but just short of this concentration
the coefficient jumps to a large value and remains fixed until saturation.
Mathematically, this diffusion coefficient is '

(5.2) D(c) = 0 for ¢ Rc* - ¢

A
=: forcrec<c % c*

where A is a constant, and e/c* < < 1. This second extreme case is obtained by
letting € become arbitrarily small and thereby take the 1imit as ¢ + 0 .

We assert that the normalized uptake curve m(t) for any non-decreasing
diffusion coefficient D(c) always lies in between the normalized uptake curves
calculated for the two extreme cases given by Eq. 5.1 and Eq. 5.2 {in the 1imit of
e » 0). (The normalization of the uptake curves is discussed in the next section.)
Thus, the uptake curves calculated using the two extreme diffusion coefficients
bracket the range of uptake curves for all non-decreasing diffusion coefficients
D{c). We have tested this assertion with a very large number of different
concentration dependent diffusion coefficients including, for example, diffusion
coefficients which increase exponentially with concentration. In all cases the
uptake curves remained between the two extremes. As we shall see, for slurry
systems these two extreme cases yield normalized uptake curves which lie
surprisingly close together. So the .curves for all non-decreasing diffusion
coefficients lie close together.

Case II diffusion is distinctly different from Fickian diffusion and cannot
be described by similar equations. In Case II diffusion there is a sharp
penetration front that propagates into the matrix material at a constant velocity,
so the initial uptake of penetrant is linear in time. Ahead of the front the
concentration is nearly zero, and behind the front the concentration is nearly
constant.+ Then for Case II diffusion, the concentration c{t,x) of penetrant at
position X in a particle is given by
(6) c{t,x) =c* if s % vt
=0 ifs>vt,
where s is the distance from the point X to the particle's surface, and v is the
velocity of the penetration front. Case II diffusion often occurs where the
absorption of the penetrant results in a transition of the matrix material from a
plastic to a rubbery or viscous state. Since some liquids are known to transform
some coals from a plastic to a rubbery state (8,9), Case II diffusion or behavior
intermediate between Case Il and Fickian diffusion is a possibility for coals.

One of the most common and easiest methods of characterizing the
diffusional behavior of a system is to expose the material to the fluid at
t = 0, and to monitor the uptake as a function of time. This is the approach taken
in this study. For this approach there are two aspects of these diffusional systems

73



{
+

that we are particularly interested in: (1) given the uptake behavior, what can be
learned about the diffusion coefficient D(c); and (2) how well can the uptake be
predicted without having detailed knowledge of the diffusion coefficient. To
address these issues, the uptakes were calculated for the systems that were
described above.

The uptakes were calculated from Eqs. 1-6 using numerical methods on a
digital computer. The method used was the Crank-Nicolson scheme (10). The resuts
were calculated to an accuracy of better than 0.1%, so any residual deviations from
the exact results would not be observable in the figures.

METHOD OF PRESENTATION OF DATA

Results for each of the models with the conditions discussed in the
Formulation Section are presented in this paper in graphical form, A few words are
needed to describe the mode of presentation of the graphical data. The approach
taken in this study is that the experimenter does not know anything a priori about
the diffusive behavior of his system; rather he measures the penetrant uptake as a
function of time and then attempts to determine such characteristics as the type of
diffusion (e.g. Fickian, or Case II, or an intermediate behavior), and the
concentration dependence of the diffusion coefficient. Our procedure, then, is to
compute theoretical curves based on various models to which the experimenter can
compare his data and attempt to determine the diffusive character of his system.
The data computed for the different hypothetical models are conveniently displayed
as normalized graphs or curves. The vertical axis measures the fraction of
penetrant taken up by the medium, where 1.0 is the maximum value which occurs at
saturation (i.e., equilibrium). The horizontal axis is the time axis. For Fickian
diffusion having the boundary condition of constant concentration of penetrant at
the fluid-solid interface, the uptake curve for any reasonably shaped particle will
be proportional to vt at small enough times. Since a linear curve (initially) is
easy to evaluate visually, the time axis in the figures is scaled as vt. What
remains is to scale the absolute magnitude of time along the time axis. We have
found that a convenient criterion is to match the slopes of the various curves in a
figure at zero time. Then the curves start off together and it is easy to observe
how they deviate from the original slopes as time progresses. For the single
particle data for Fickian diffusion, the scaling of the system is arbitrarily chosen
to produce initial slopes of 45°, The uptake curves produced by plotting fractional
uptake versus the square root of time, where the initial slopes are scaled to be
45°, will be referred to as “"normalized uptake curves".

RESULTS
Fickian Diffusion

a. Fickian diffusion in a single slab-shaped particle N

Figure 1 shows the normalized uptake curves for Fickiar diffusion in a
slab, for a constant diffusion coefficient and for the diffusion coefficient defined
in Eqs. 5.2. (Recall that the normalized uptake curve for any non-decreasing .
diffusion coefficient lies in between these two curves). The lower curve is for the
constant diffusion coefficient and the upper curve is for the coefficient which is
zero except for concentrations very near saturation. The curves are straight and
virtually indistinguishable up to an uptake of roughly 0.6. This behavior is not
surprising since it is well known that for Fickian diffusion in a semi-infinite §
medium with the boundary condition described in Eq. 3.1, the curves would be
straight for all time for any concentration dependence of the diffusion -
coefficient. A deviation T?%h the straight line can only occur when there is an
appreciable overlap of fluid diffusing in from one side of the slab with fluid which \
diffused in through the other side. That is, only when the fluid achieves an
appreciable concentration at the center plane of the siab do differences occur
between the finite thickness slab and a semi-infinite slab. v
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The diffusional behavior for the diffusion coefficient defined by Egs. 5.2
is readily pictured physically. Since for this diffusion coefficient there can be
no diffusion unless the fluid concentration is essentially at saturation, the fluid
propagates into the medium as a sharp front with concentration zero ahead of the
front, and it is essentially at its saturation value behind the front. The front
propagates with a decreasing velocity which is proportional to 1/vt. Only when the
fronts propagating in from opposite sides of the slab meet, does the system
recognize that the slab is not semi-infinite. Since Fickian uptake curves for non
decreasing diffusion coefficients always remain concave towards the vt axis (11), it
is clear that the diffusion coefficient of Eqs. 5.2, which maintains the 45°
straight line all the way to saturation gives an upper bound to the cummulative
uptake at any time.

b. Fickian diffusion in a single spherical particle

In Figure 2, the same two diffusion coefficients used in Figure 1 are
again utilized, but this time for a spherical particle. In addition, an
intermediate concentration dependence is included -- the exponential concentration
dependence D(c) = e¢C, The exponential diffusion coefficient gives the intermediate
curve in Figure 2, which illustrates our general finding that the normalized uptake
curve for any diffusion coefficient (that is non-decreasing with concentration)
always lies in between the normalized uptake curves obtained from the extreme
diffusion coefficients in Eq. 5.1 and Eqs. 5.2. For spherical particles the
difference in the normalized uptake curves for the two diffusion coefficients which
give the upper and lower bounds is much less evident than for the slab case. In
fact, unless an experimental uptake curve had a very high accuracy, it would be
difficult to determine whether the observed behaviour was produced by the most
strongly concentration dependent diffusion coefficient possible (the upper curve) or
by a constant diffusion coefficient (the lower curve), much less some intermediate
concentration dependence.

It is seen in Figure 2, that the uptake curves depart from the initial
straight line much earlier than for the slab. The deviation from the straight line
by the upper curve, for which the penetrant propagates into the material as a sharp
front, is caused by the smaller and smaller area of the surface defined by the front
as it propagates towards the center of the sphere.

c. Fickian diffusion in a slurry of slab-shaped particles

Figure 3 shows the effect of the particle size distribution on the uptake
behavior of slab-shaped particles., The curves in this slurry graph are scaled such
that if all of the volume of the sample was used in making up particles of the same
size as the largest particle in this distribution, then the curves would start out
at 45° on this plot. Of course the presence of the smaller particles in the
distribution results in a larger surface area than if the same volume resided in
larger particles, so the initial slope for the slurry is considerably greater than
45°,

The top and bottom curves in Figure 3 are for the same diffusion
coefficients as in Figure 1. It is immediately obvious by comparing Figures 1 and 3
that the particle size distribution dramatically changes the behavior of the
normalized uptake curves. For example, for this slurry of slab-shaped particles
there is significantly less difference between the uptake curves for the two extreme
concentration dependencies shown than for the single particle case. In fact, the
curves for the slurry of slab-like particles in Figure 3 are significantly closer
together than the curves for the single spherical particle in Figure 2.

It is seen that the uptake curves in Figure 3 fall well below the initial
slope at a much lower uptake value than even for the single spherical particle
case. Qualitatively the reason for this early deviation is clear. The smaller
particles in the distribution approach saturation quickly and then contribute little
to the uptake. The close correspondence of the two curves at all times and the
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dramatic differences between the curve shapes in Figures 1 and 3 suggest that the
particle size distribution is the dominant factor in the uptake behavior.

d. Fickian diffusion in a slurry of spherical particles

Figure 4 presents slurry data for spherical particles calculated using the
diffusion coefficients described previously. This figure should be compared with
the single spherical particle curves of Figure 2. The uptake curves in Figure 4 lie
very close together, even though the curves represent the two extreme cases of
concentration dependence for (monotonically increasing) Fickian diffusion
coefficients. It is clear from these results that for the sort of particle
distribution used, it is extremely difficult, if not impossible, to get reliable
concentration dependence information for the diffusion coefficient from the shape of
the uptake curve.

Case II Diffusion and Comparison with Fickian Diffusion

As described previously, Case II diffusion exhibits behavior which is
fundamentally different from Fickian diffusion, regardless of the concentration
dependence of the Fickian diffusion coefficient. Case II diffusion is easy to
visualize since it involves the propagation of a sharp front into the medium, with
zero concentration ahead of the front and saturation behind the front. 1In this
respect it is similar to the Fickian diffusion described by Eqs. 5.2, and discussed
previously. However, physically and mathematically these two modes of diffusion are
fundamentally different. For example, whereas (regardless of the concentration
dependence) a Fickian front propagates into a semi-infinite medium at a velocity
proportional to 1//t (assuming the usual fixed concentration of penetrant at the
surface), the Case Il front propagates at a constant velocity.

a. Case II diffusion _in a single slab-shaped particle

Figure 5 shows the penetrant uptake curve for Case I[I diffusion in a
single slab-like particle. In this figure the Case II diffusion is compared to the
two extremes of Fickian diffusion previously shown in Figure 1. The curve which
starts off lowest in Figure 5 is from Case II diffusion, the other two curves are
identical to the ones in Figure 1. The Case Il uptake curve can not be conveniently
normalized to a initial slope of 45° on this graph because of its initial linear-in-
t time dependence. Therefore, the Case II curves were normalized in a different
manner. In all of the remaining figures, the Case Il curve is scaled along the
square-root-of-t horizontal axis by requiring that the area under its curve be equal
to the area under the curve for the constant Fickian diffusion coefficient. The
dramatic difference in behavior between Case II diffusion and Fickian diffusion for
%gx_monotonica11y increasing concentration dependence is obvious from Figure 5.

resumably uptake curves for Fickian diffusion coefficients having any concentration
dependence which is a non-decreasing function of concentration will fall between the
two Fickian curves in Figure 5, whereas the Case II curve is far out of this
range. While the Case II curve appears to be highly curved in this v/t plot,
actually the Case II curve would be a straight line if the graph utilized a linear-
in-t horizontal axis.

b. Case IT diffusion in a slurry of slab-shaped particles

Figure 6 shows the uptake curve for Case II diffusion for a slurry of
slab-like particles. The particle size distribution is given by Eqs. 1. The
corresponding Fickian uptake curves for this particle shape and particle size
distribution, which were shown in Figure 3, are displayed in Figure 6 for
comparison. It is seen that there is slightly closer correspondence between the
Fickian and Case II curves for the slurry than in Figure 5 for the individual
particles, but the curves are still quite different. Comparing the Case IT curve
for the individual slab of Figure 5 with the Case II curve for the slurry of Figure
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6, it is seen that in the region up to an uptake of about 0.8 the curve in Figure 6
has much less curvature than in Figure 5, In fact, over more than half of the
entire uptake curve, from below 0.2 up to nearly 0.8, the Case II uptake curve in
Figure 6 is very nearly straight. This is surprising since with our boundary
conditions a straight line plot of uptake versus square root of time is commonly
taken as the signature of Fickian diffusion. To add to the confusion, the Fickian
curves in Figure 6 have much more curvature than the Case II curve. So, if the very
early time curvature of the Case II curve were neglected (for example, there are
frequently experimental difficulties or uncertainties at small times), it is
possible that an experimenter would misinterpret the Case II curve as signifying
Fickian diffusion, and would misinterpret the Fickian curves as signifing a non-
Fickian type of diffusion. Recall also that the particle size distribution used for
these calculations is not an arbitrary one, but is a fit to an experimentally
derived curve from the ball milling of a coal. Therefore, it is crucial that an
experimenter understand the effective particle size distribution of his sample
before attempting to interpret diffusional data from uptake curves. A particle's
effective size will be affected by the exact shape of the particle, and in fact, the
effective particle size may be quite different from the particle's geometrical
size. This distinction can be especially important for heterogeneous, crack-
containing, and porous materials, such as coals, for which the geometrical surface
and the region rapidly penetrated by fluids may differ substantially (5).

The change in shape of the Case II uptake curve for the slurry in Figure 6,
as compared to the single particle uptake in Figure 5, is caused by the saturation
of the smaller particles so that they no longer contribute to fluid uptake.

c. Case II diffusion in a single spherical particle

Figure 7 shows the Case II uptake curve for a single spherical particle.
Also shown on the graph are the Fickian uptake curves for the corresponding
system. The Case II uptake curve for the sphere differs from the linear-in-time
behavior for the slab, because as the diffusion front propagates into the sphere
towards the center, the position of the front describes a smaller and smaller
sphere. It is noteworthy that for the single spherical particle, the Case Il uptake
curve has a long, relatively straight region from about 0.2 to 0.8 on the square-
root-of-time plot. This is a longer (approximately) straight region than for the
corresponding Fickian curves. Of course, the large curvature in the region below an
uptake of 0.2 gives away the non-Fickian behavior of the Case II curve for this
system.

d. Case II diffusion in a slurry of spherical particles

JFigure 8 shows the uptake curve for Case II diffusion in a slurry of
spherical particles whose size distribution is again given by Eqs. 1. The Fickian
curves for the corresponding systems (i.e. Figure 4) are also shown. What is
remarkable about this Case II curve is that it is nearly straight all the way from
an uptake of about 0.05 to 0.7 uptake. If the particle size distribution was not
taken into consideration one could very easily conclude {mistakenly) that this
uptake curve is the result of Fickian diffusion.

It is clear from the above results that for slurry systems it is very
difficult to determine the concentration dependence of the diffusion coefficient, or
even the type of diffusion, from the usual continuous fluid uptake curve. If
concentration dependent diffusional information is desired for a system, more
effective, though less convenient, methods must be used, such as equilibrating the
sample at various concentrations and making differential uptake measurements.

CONCLYSIONS

This study has shown that the fluid uptake behavior of particles in

slurries can differ drastically from the uptake behavior of individual particles.
Therefore, fluid uptake profiles for single particles must not be utilized to
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interpret diffusional data on slurries without taking into consideration the
particle size distribution. For a particle size distribution produced by the ball
mill grinding of coal, it was found that the effect on the penetrant uptake was
sufficiently severe that the initial uptake rate for Fickian diffusion was highly
non-linear on a square-root-of-time plot. However, surprisingly, with this same
particle size distribution, Case II diffusion gave a nearly linear graph on a
square-root-of-time plot. So Case Il diffusion might easily be mistaken for Fickian
diffusion for this system. Thus faulty analysis of the diffusional system can
readily occur.

This study also brought to light an unexpected similarity in the shape of
fluid uptake curves for diffusion coefficients having drastically different
concentration dependencies. For a coal slurry having a typical particle size
distribution, the fluid uptake profiles for diffusion coefficients having extremes
in concentration dependence are quite similar for slab-shaped particles, and for
spherical particles the curve shapes are almost indistinguishable. These results
show that the concentration dependence of diffusion coefficients can not be readily
determined for slurry systems using continuous fluid uptake measurements. Other
less convenient methods must be used, such as differential uptake measurements.

For coals and other micro-heterogeneous and micro-cracked materials, the
problem of determining diffusional behavior is particularly complex because the
external surface geometry may not satisfactorily indicate the rate of penetration of
the fluid into the particles. In coal, for example, the uptake of fluid through
holes, cracks, along maceral interfaces and along regions of mineral matter may
contribute substantially to the diffusion process. In addition, the various
macerals or microcomponents of the coal will have different diffusional
characteristics. Even within the vitrinite classification different pieces of

- material may exhibit substantially different diffusion characteristics.
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Figure l. Solvent uptake for a single slab-ghaped particle

a) Lower curve is for constant diffusion coefficient (concentration independent)

b) Upper curve is for extreme concentration dependent Fickian diffusion

UPTRKE
o.s

SINELE PPRTICLES

.5
SORT(T!

Figure 2.

Solvent uptake for a single spherical particle

a) Lower curve 1s for constant diffusion coefficlent {concentration independent)
b) Middle curve ia for exponentially cohcentrstion dependent diffusion coefficient
c) Upper curve 1s for extreme concentration dependent Fickian diffusion
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8) Lower curve is for constant diffusion coefficient (concentration independent)
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Figure 4. Solvent uptake for a slurry of spherical particlea

a) Lower curve is for constant diffusion coefficient (conceatration independent)

b) Upper curve is for extreme concentration dependent Fickian diffusiocn
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Figure 5. Solvent uptake for a single slabeshaped particle
a) Curve 1 is for constant diffusion coefficient (concentration independent)
b) Curve 2 is for extreme concentration dependent Fickian diffusion
¢) Curve 3 ia for Case II diffusion (constant veloelity)
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Figure 6. Solvent uptake for a slurry of slab-ghaped particles

a) Curve 1 is
b) Curve 2 is
c¢) Curve 3 is

for constant diffusion coefficient (concentration independent)
for extreme concentration dependent Fickian diffusion
for Case II diffusion (constant velocity)
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Figure 7. Solvent uptake for a single spherical particle

a) Curve 1 is for constant diffusion coefficient (concentrstion independent)
b) Curve 2 is for extreme concentration dependent Fickian diffuaion
¢) Curve 3 is for Case II diffusion (constant velocity)
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Figure 8, Solvent uptake for a slurry of apherical particles

a) Curve 1 is for constant diffusion coefficient (concentration independent)
b) Curve ? is for extreme concentrstion dependeat Fickian diffusion
c) Curve 3 is for Case II diffusion (constsnt velocity)
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