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Introduction 

Moisture i n  low-rank coals i s  believed t o  involve a t  l eas t  two fundamentally 
different mechanisms for  binding water t o  the coal matrix (1).  The f i r s t  type of 
moisture behaves a s  i f  were "free";  t h e  vapor pressure versus temperature behavior 
is t h a t  of pure water. The second type occurs a t  s i t e s  where i t  i s  bound more 
t i gh t ly ,  resulting in  a lowering of the vapor pressure relative t o  t ha t  of pure 
water a t  the same temperature. Such moisture may be hydrogen bonded t o  oxygen- 
containing functional groups o r  i t  may be incorporated as water of hydration of ion- 
exchangeable cations. There might also be t igh t ly  entrained moisture, i n  the  pore 
structure,  between the thermodynamical ly  "free" moisture and the chemically bonded 
moisture. The objective of our work was to  investigate the  application of two 
experimental techniques, d ie lec t r ic  re1 axation spectroscopy and immqrsional 
calorimetry, t o  the  characterization of moisture content and pore structure of low- 
rank coals. 

Dielectric techniques can sometimes prove valuable in studying bulk matter 
containing specific polar molecules (2, 3) .  Fran a theoretical  standpoint, a 
parallel plate capacitor with a vacuum between i t s  electrodes ceases t o  behave as a 
pure capacitance ( a t  all  frequencies) when a condensed matter d ie lec t r ic  i s  
inserted. If a n  al ternating voltage i s  applied to  the  capacitor containing a 
d i e l ec t r i c ,  the current and voltage will no longer be precisely n /2  radians out of 
phase, n/2 being the value fo r  a vacuum-filled capacitor. The dfgree of departure 
fran n / 2  radians as expressed by the angle 6, depends on the  lossyness" of the  
d ie lec t r ic  . 

The process of absorption (defined as the concentration of a substance on  a 
surface where the substance, the absorbate, i s  in a gas o r  liquid form and the  
absorbent a so l id)  i s  spontaneous and i s  characterized by a f a l l  in the entropy of 
t he  system and a decrease in surface f ree  energy. This necessitates the absorption 
process to  be exothermic, the  resultant energy being referred to  as  the heat of 
immersion or heat of wetting. Therefore the  exothermic heat l iberated when a porous 
solid i s  immersed in a liquid i s  related t o  the surface energy of the solid and the 
measurement of i t  can be used t o  determine the  surface area of various solid 
samples. 

Apparatus and Materials 

( a )  Dielectric Cell. 
The d ie lec t r ic  ce l l  was constructed from two s ta in less  steel electrodes 

attached t o  corresponding outer s ta in less  steel  supports by means of a screw 
sandwiching a disk of insulating Teflon ( see  Figures 1 and 2 ) .  One electrode was 
63  mm in diameter. The other, 50 nun in diameter, was surrounded by a 6 mm wide 
s ta in less  steel annulus fran which i t  was insulated by Teflon tape.  This outer 
guard r i n g  was kept a t  ground potential to  eliminate fringing f i e l d s ,  edge effects 
and surface conduction across the d ie lec t r ic  being studied. The impedance measuring 
i nStrUment used was a General Radio 1621 precision capacitance measuring system. 
This experimental setup enables the  measurement of the equivalent para1 le1 
capacitance and resistance of the cell t o  be made a t  a given temperature and 
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frequency. For t h e  subambient temperature measurements, t h e  c e l l  was placed i n  a 
styrofoam box and cooled w i t h  l i q u i d  n i t r o g e n  t o  t h e  s t a r t i n g  temperature. 

( b )  D i f f e r e n t i a l  Calorimeter. 
The d i f f e r e n t i a l  ca lo r ime te r  cons is ts ,  i n  essence, o f  two d i s c r e t e  u n i t s ,  each 

a ca lor imeter  i n  i t s  own r i g h t  (see Figures 3 and 4). Each would have i t s  own 
( i d e n t i c a l  t o  t he  o the r )  paddle s t i r r e r  mechanism, heater  c i r c u i t ,  temperature 
sensing c i r c u i t  and Dewar f l ask .  This t w i n  ca lor imeter  u n i t  would then be operated 
i n  d i f f e r e n t i a l  mode; i.e., a s i m i l a r  amount o f  wet t ing l i q u i d  would be put i n t o  
each ca lor imeter  Dewar, t h e  ca lor imeters being imbedded i n  a metal heat s i n k  f o r  t h e  
thermal s t a b i l i t y  required, and t h e  coal o r  carbon sample would be added t o  one 
Dewar. The temperature measuring c i r c u i t  cons i s t s  o f  a p a i r  o f  matched the rm is to rs ,  
i nse r ted  i n t o  opposing arms o f  a Wheatstone bridge. Thus t h e  heat l i b e r a t e d  when the 
s o l i d  sample was added t o  t h e  working Dewar would upset t h e  balance cond i t i ons  of 
t he  Wheatstone br idge due t o  the  res i s tance  change o f  t h e  working Dewar's 
thermistor ,  w i th  respect t o  t h e  reference Dewar's the rm is to r  res is tance,  and would 
produce an out-of-balance cu r ren t  t h a t  can be d i r e c t l y  measured on a potent iometr ic  
cha r t  recorder. This method o f  temperature measurement has t h e  advantage t h a t  i t  i s  
referenced t o  ambient condi t ions ard not ,  f o r  example, t o  t h e  temperature o f  me l t i ng  
ice. The heat s ink  was fab r i ca ted  from a 38 x 30 x 23 cm aluminum block. Two holes 
were bored i n  the  heat s ink o f  diameter s l i g h t l y  l a r g e r  than t h e  diameter o f  t h e  
Dewars, t o  enable them t o  be e a s i l y  lowered ins ide .  The s t i r r i n g  mechanism was 
designed t o  r a p i d l y  mix t h e  mater ia l  t o  be tested w i t h  t h e  wet t ing l i q u i d ,  producing 
a maximum dispers ion o f  t h e  ma te r ia l  i n  t h e  l i q u i d  w i t h  a minimum product ion o f  heat 
fran the work o f  s t i r r i n g .  The work o f  s t i r r i n g  should i d e a l l y  be constant. The 
r o t a t i n g  paddle type of s t i r r e r  was used, t he  g lass paddle being mounted i n s i d e  a 
guide tube which was i n  t u r n  supported i n  a ground g lass  cone. 

( c )  Coal Samples. 
Two coals  were chosen f o r  study: Gascoyne (Nor th  Dakota) l i g n i t e  and Yampa 

(Colorado) subbituminous. The samples were obtained f r a n  t h e  U n i v e r s i t y  o f  North 
Dakota Energy Research Center coal sample l i b r a r y .  Composition da ta  i s  g iven i n  
Table I .  

Testing Procedures 

(a )  D i e l e c t r i c  Ceasurement. 
Samples o f  several forms were used i n  t h e  d i e l e c t r i c  c e l l .  I n i t i a l  t e s t s  were 

performed w i th  63  nnn diameter, 3 mn t h i c k  d isks o f  coal sawn from s o l i d  blocks. 
Subsequent work invo lved 16, 30, 60, and -60 mesh powders. The connected and loaded 
c e l l  was lowered i n t o  t h e  styrofoam box and l i q u i d  n i t rogen  added t o  coo l  t h e  c e l l  
and contents t o  around -190OC. The capacitance br idge was balanced and then the 
c e l l  was allowed t o  warm up, du r ing  which t ime  t h e  measurements o f  T, temperature; 
F, frequency; C, capacitance, and G, conductance were performed. These var iab les 
would then subsequently be i nse r ted  i n t o  Equation 1 t o  determine t h e  phase s h i f t  t an  
6 a t  a given frequency. The phase s h i f t ,  expressed as the  phase angle between 
voltage and current ,  i s  a f u n c t i o n  o f  t h e  s p e c i f i c  res is tance o f  t h e  coa l ,  which i n  
t u r n  i s  daninated by t h e  presence o f  i t s  conductive phase, water. 

t a n  6 =  2nFC 1 )  

A t y p i c a l  experiment invo lved t a k i n g  data over a temperature range o f  -170' t o  
0°C a t  0.1, 1.0 and 10.0 kHz. The temperature was measured by means o f  a chranel- 
alumel thermocouple attached t o  t h e  guard r i ng .  P lo ts  o f  t a n  6 against  temperature 
y ie lded  t h e  requi red d i e l e c t r i c  spectra f o r  t h a t  frequency. 
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Table I .  -. Charac te r i s t i cs  o f  Coal Samples. 

Sample Ga scoyne Yampa 

Rank L i g n i t e  Subbi tumi nous 
Mine Location Bowman Co., North Dakota Routt Co., Colorado 
Heating Value (maf) , B t u / l  b 11677 13524 

Proximate Analysis, (As Rec‘d); wt%: 
Moisture 
V o l a t i l e  Mat ter  
Fixed Carbon 
Ash (ASTM) 

Carbon 
Hydrogen 
Ni t rogen 
Oxygen 
Su l fu r  

U l t ima te  Analysis (maf) ; wt%:  

37.60 
29.06 
0.00 
9.70 

69.05 
4.73 
1.04 

23.15 
2.03 

10.30 
32.20 
44.00 
13.50 

60.81 
4.50 
2.53 

11.30 
0.79 

( b )  D i f f e r e n t i a l  Calor imetry .  
The technique used w i t h  t h e  d i f f e r e n t i a l  ca lo r ime te r  was t o  add 75 m l  o f  

wet t ing f l u i d  (methanol o r  t e t r a l i n )  t o  each o f  t he  c lean,  d ry  Dewar vessels. The 
top  sections, canplete w i t h  sensing and s t i r r i n g  apparatus were then lowered i n t o  
t h e  Dewars. Two grams o f  sample i n  a stoppered b o t t l e  was placed on t o p  o f  t h e  heat 
sink so t h a t  i t  could a t t a i n  t h e  same temperature as the  r e s t  o f  t h e  system. The 
char t  recorder was s t a r t e d  a f t e r  t h e  b r idge  had been adjusted t o  i t s  optimum 
operat ing c o r d i t i o n s  (250  mV). When t h e  temperature remained constant, shown by a 
s t r a i g h t  ho r i zon ta l  l i n e  on t h e  t race,  t h e  c a l i b r a t i o n  heater  was switched on f o r  60 
seconds ( A  t o  B, F igu re  5). During t h i s  time, t h e  vo l tage across the  heater  and the 
current  passing through it were determined. A f t e r  a reasonable po r t i on  o f  t he  
cool ing curve had been recorded f o r  ex t rapo la t i on  purposes (B t o  C, F igure 5 ) ,  the 
weighed sample was in t roduced t o  t h e  working Dewar by means o f  t h e  funnel mounted i n  
the  cone ( C  t o  D, F igu re  5). A reasonable p o r t i o n  o f  t h e  cool ing curve was again 
recorded (D t o  E, F igu re  5) and l a t e r  another app l i ca t i on  o f  t h e  heater  f o r  a known 
t ime per iod was appl ied t o  the  working Dewar w i t h  t h e  r e s u l t i n g  temperature r i s e  (E 
t o  F, F igure 5). 

The heat o f  we t t i ng  i n  c a l o r i e s  per  gram i s  g iven by: 

where V i s  t h e  heater  vo l tage i n  v o l t s .  
I i s  t h e  hea te r  cu r ren t  i n  amps. 
T i s  t h e  t i m e  t h e  heater  was switched on f o r  ( i n  seconds) 

which produced t h e  corrected temperature d e f l e c t i o n  o f  “h. 
ow i s  t h e  co r rec ted  temperature d e f l e c t i o n  when the  sample was 

wetted w i t h  t h e  we t t i ng  l i q u i d .  
J = A constant  = 4.18 j o u l e s  per ca lo r i e .  
W = weight o f  sample i n  grams. 
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Note t h a t  t he  second a p p l i c a t i o n  o f  t h e  heater  ( a f t e r  t h e  a d d i t i o n  o f  t he  
sample) w i l l  always produce a lower de f l ec t i on ,  due t h e  c o n t r i b u t i o n  o f  t h e  sample 
t o  t h e  t o t a l  s p e c i f i c  heat capaci ty  o f  t h e  Dewar and contents. The expression f o r  
descr ib ing t h e  thermal capaci ty  o f  t h e  system i s :  

C = CF + MLSL + McSc 3) 

where C = thermal capaci ty  o f  system, 
CF = thermal capaci ty  o f  f i x e d  apparatus i n  t h e  Dewar 

(heat  supports, s t i r r e r ,  Dewar, etc.), 
ML = mass o f  l i q u i d ,  
SL = s p e c i f i c  heat  capaci ty  o f  we t t i ng  l i q u i d ,  
Mc = mass o f  s w p l e ,  
Sc = s p e c i f i c  heat capaci ty  o f  sample. 

It should the re fo re  be poss ib le  t o  get an idea o f  t h e  heat capac i t y  o f  t h e  
sample by t h e  d i f f e r e n c e  i n  de f l ec t i ons  between t h e  f i r s t  and second app l i ca t i ons  o f  
t h e  c a l i b r a t i o n  heater. 

The heat o f  wet t ing pe r  u n i t  area f o r  any g iven l i q u i d  on a p a r t i c u l a r  surface 
i s  a constant f o r  t h a t  l i q u i d  provided t h e  l i q u i d  wets t h e  sur face o f  t h e  s o l i d  
per fect ly .  The value o f  t h i s  constant i s  g i ven  by Bond and Spencer (4) as 10.7 f o r  
methanol. I n  order  t o  conver t  t h e  heat  o f  wet t ing r e s u l t s  i n t o  sur face areas, Bond 
and Spencer measured the  heat  o f  wet t ing o f  a non-porous arbon b lack having a 
surface area o f  230 m2/gm. Thus, t h e  heat o f  we t t i ng  per nf = 10.7/230 ca lo r i es .  
A l t e r n a t i v e l y ,  1 c a l o r i e  o f  heat  i s  l i b e r a t e d  when 21.5 m o f  carbon sur face i s  
wetted by methanol. 

The corrected temperature r i s e s  were obtained (6) b y  ex t rapo la t i ng  t h e  cool ing 
curve u n t i l  it crossed t h e  v e r t i c a l  l i n e  drawn from t h e  po in t  h e n  t h e  heater  was 
i n i t i a l l y  switched on, o r  t h e  po in t  when t h e  coal was added. I n  t h i s  way t h e  e f f e c t  
o f  t h e  coo l i ng  o f  t h e  Dewar, which would occur du r ing  t h e  t ime  t h e  heater  was on, 
would be n u l l i f i e d .  Therefore, each t ime  t h e  heater  was turned on o r  t h e  coal was 
added, enough t ime had t o  elapse af terwards f o r  a representat ive amount o f  t h e  
cool ing curve t o  be recorded f o r  an accurate ex t rapo la t i on  t o  be made. This 
v e r t i c a l  d is tance would be measured and t rea ted  as t h e  co r rec ted  temperature r i s e .  

I n  most cases, t h e  slope o f  t he  temperature against  t ime curve be fo re  and a f t e r  
heat i npu t  was the  same, making t h e  actual  t ime a t  r h i c h  t h e  co r rec ted  temperature 
r i s e  was determined not  c r i t i c a l .  

Resul ts  and Discussion 

F igure 6 shows t h e  t a n  6 versus temperature behavior  f o r  a Yampa (Colorado) 
subbituminous coal o f  10% t o  12% moisture; t h e  coal had been s to red  under water and 
a i r - d r i e d  be fo re  i n s e r t i o n  i n t o  the  c e l l .  No appreciable weight l o s s  occurred 
du r ing  a i r  drying. Between -60" and O°C (no t  shown) t h e  t a n  6 increases wi thout  
bound; t h i s  i s  most l i k e l y  caused by an i o n i c  double l a y e r  formed by mobi le  ions 
present i n  t h e  coal. The peaks show a simple Debye-l ike behavior i n  t h a t  t hey  are 
r e l a t i v e l y  narrow and t h e  temperature maxima s h i f t  t o  h ighe r  temperatures w i t h  
increas ing frequency. The s o l i t a r y  curve a t  t h e  bottcm o f  t h e  f i g u r e  i s  a 0.1 kHz 
t a n  6 p l o t  f o r  t he  same sample a f t e r  i t  had been f reeze-dr ied f o r  two days a t  i o  
microns pressure. The t o t a l  l o s s  o f  mois ture was approximately 10% o f  t h e  o r i g i n a l  
weight o f  t h e  coal. The canplete l oss  o f  t h e  l a rge  d i spe rs ion  upon water  removal i s  
taken t o  be evidence t h a t  t h e  d i spe rs ion  i s  indeed caused by t h e  r e l a x a t i o n  o f  water 
molecules. When t h e  coal sample was recons t i t u ted  w i t h  water a f t e r  freeze-drying, 
t h e r e  was no s i g n i f i c a n t  d i f f e rence  i n  d i e l e c t r i c  spect ra w i t h  t h e  o r i g i n a l  spectra 
f r a n  t h e  mine f resh  sample. F igure 7 shows t h e  d i e l e c t r i c  c h a r a c t e r i s t i c s  o f  t h i s  
Yampa coal on removing and rep lac ing  t h e  mois ture f o r  one frequency. 
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Figure 8 i s  t h e  r e s u l t a n t  d i e l e c t r i c  spectra o f  t h e  Gascoyne l i g n i t e  sample. 
Here there are two d i s t i n c t  sets  o f  peaks; one set  a t  -102', -92", and -8OoC, t h e  
o t h e r  set  a t  -60°, -50", and -36'C. The l a t t e r  s e t  i s  l i k e l y  a t t r i b u t a b l e  t o  t h e  
presence o f  macroscopic c r y s t a l s  of ice. Accurate d i e l e c t r i c  measurements on pure 
b u l k  i c e  have placed t h e  spectrum i n  t h i s  v i c i n i t y  (A). Figure 9 presents t h e  
spectrum o f  t h e  same l i g n i t e  a f t e r  a i r  d ry ing  f o r  several days u n t i l  a constant 
weight had been achieved. The upper se t  o f  peaks i s  missing and t h e  lower se t  
appears a t  -108', -loo", and -90°C. The peak l oca t i ons  a r e  v i r t u a l l y  i d e n t i c a l  t o  
those i n  t h e  Colorado subbituminous coal. F i n a l l y ,  f reeze-dry ing resul ted i n  the  
l o s s  o f  more water and produced t h e  1 kHz spectrum shown a t  t h e  bo t tan  o f  t h e  
Figure. Note again t h e  evidence f o r  assoc iat ing t h e  l a r g e  r e l a t i v e  maxima w i t h  t h e  
presence o f  water. 

When t h e  Gascoyne sample was recons t i t u ted  wi th  water a f t e r  freeze-drying, two 
d i s t i n c t  se t  o f  peaks were again apparent; t h e  spectrum was no t  s i g n i f i c a n t l y  
d i f f e r e n t  f r a n  t h a t  o f  F igure 8. These experiments i r d i c a t e  t h a t  t h i s  l i g n i t e  
incorporates 80% o f  i t s  mois ture i n  a loosely-bound form which freezes t o  i c e  below 
0°C and t h a t  t h e  remaining 20% i s  present i n  t h e  coal poss ib l y  as water o f  
hydration, which does no t  c r y s t a l l i z e  i n t o  ice.  The Colorado subbituminous coal 
contains on ly  the  l a t t e r  type o f  bound moisture. These r e s u l t s  a re  consis tent  w i t h  
t h e  conclusion about two types o f  bound water, based on vapor pressure s tud ies (3). 

Samples o f  -60 mesh Yampa subbituminous arid Gascoyne l i g n i t e  were tested to-see 
what e f f e c t  powdering had on t h e  d i e l e c t r i c  spect ra l  q u a l i t y .  The spectra displayed 
i n  Figures 10 ard 11, respec t i ve l y ,  show resolved t a n  6 peaks a t  approximately the  
same temperature l o c a t i o n s  observed f o r  t h e  s o l i d  d isk experiments. This proves 
t h a t  the powdered coal samples show t a n  6 peaks o f  s u f f i c i e n t  q u a l i t y  t o  a l l e v i a t e  
t h e  need f o r  preparing s o l i d  d i sk  samples. 

A se r ies  o f  experiments were coduc ted  t o  t e s t  t h e  e f f e c t  o f  d i f f e r e n t  mesh 
s i zes  o f  coal  granules on spec t ra l  peaks and spect ra l  q u a l i t y ,  t o  determine i f  
p a r t i c l e  s i ze  had an e f f e c t  on the  type o r  amount o f  water content  o f  t h e  coal. 
Yampa (Colorado) subbituminous was sieved i n t o  mesh s izes 16, 30, 60, and f i n e s  less 
than  -60. The spect ra l  q u a l i t y  f o r  t h e  f i r s t  s e t  o f  peaks (presumably Corresponding 
t o  the t ight ly-bound water o f  hydrat ion)  improves as t h e  s i ze  o f  t h e  specimen 
p a r t i c l e  decreases. The spect ra l  peaks a r e  much more c l e a r l y  def ined f o r  t he  -60 
mesh s i ze  than f o r  those a t  16 mesh. 

The i n t e r p r e t a t i o n  o f  t h e  d i e l e c t r i c  spect ra ard c o r r e l a t i o n s  o f  d i e l e c t r i c  
r e s u l t s  w i th  o the r  measurable coal c h a r a c t e r i s t i c s  i s  s t i l l  i n  progress. However, 
t he  size, l o c a t i o n ,  and number o f  peaks i n  d i e l e c t r i c  spect ra prov ide a s i g n i f i c a n t  
quan t i t y  of i n fo rma t ion  on t h e  s t a t e  and behavior o f  t h e  c o a l ' s  i n t r i n s i c  moisture. 
There a re  many ways i n  which water may be attached t o  t h e  coal, e i t h e r  l oose ly  as 
water i n  t h e  pore s t r u c t u r e  o r  chemical ly  bonded t o  t h e  coal  ma t r i x  as, f o r  example, 
water of hydration. Measurement o f  d i e l e c t r i c  p roper t i es  o f  t h i s  water present i n  
t h e  coal has i n d i c a t e d  t h e  d i s t i n c t i o n  between a t  l e a s t  two o f  t h e  mechanisms o f  t h e  
water bordi ng . 

A sample o f  t h e  Gascoyne l i g n i t e  was tested i n  t h e  immersion ca lo r ime te r  w i t h  
methanol. I t s  heat output  (determined from Figure 12) was found t o  be 65.74 j ou les  
Per gram (15.49 c a l o r i e s  per  gram). Using a 10.7 conversion f a c t o r  (4) gives a 
surface area o f  165.72 m2gm-l. A s i m i l a r  sample o f  Yampa subbituminous coal was 
tested and gave r i s e  t o  t h e  output shown i n  F igu re  13. It i s  i n t e r e s t i n g  t o  note 
t h e  key dif ference between these two f i gu res ,  t h a t  o f  t h e  near l y  instantaneous heat 
Output of t h e  l i g n i t e  ( t h e  exothermic heat o f  we t t i ng  was l i b e r a t e d  i n  a few 
seconds) i n  canparison w i t h  t h a t  o f  t h e  subbituminous coal .  I n  t h e  l a t t e r  case, t h e  
heat output occurred over  several hours, presumably as t h e  methanol we t t i ng  l i q u i d  
explored t h e  system o f  micropores which were approaching molecular dimensions. The 
speci f ic  and corresponding sur face area were not  ca l cu la ted  due t o  t h e  d i f f i c u l t y  i n  
obta in ing a co r rec ted  temperature d e f l e c t i o n  ow from Figure 13. 

Further  t e s t i n g  was c a r r i e d  out on var ious mesh s izes o f  Gascoyne l i g n i t e  t o  
determine if t h e  external  o r  apparent sur face area was a s i g n i f i c a n t  f a c t o r  i n  t h e  
t o t a l  ( i n c l u d i n g  i n t e r n a l  pores) surface area value. Mesh s izes o f  16, 30, 60, and 
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powder l e s s  t h a n  -60 were used without significant variation i n  the heat o u t p u t .  
The to ta l  surface area of a coal i s  therefore very tolerant of sample powder s i z e ,  
the internal pore surface area t e n  being daninant when canpared to  the external o r  
apparent surface area term. This i s  the  expected result  i f  the  pores a re  very 
small. 

A probe liquid of larger molecular volume t h a n  methanol should n o t  be SO able 
t o  penetrate the  porous structure,  especially the  micropore region which can account 
for u p  t o  95% of the total  surface area. Tetrahydronaphthalene ( t e t r a l i n )  was thus 
used because of i t s  re la t ive ly  large sized molecules and because of i ' ts  in te res t  a s  
a hydrogen donor in liquefaction. Yampa subbituminous and Gascoyne l i g n i t e  were 
then tested in the calorimeter using t e t r a l in .  The resu l t s  of the  surface area 
determinations a re  tabulated in Table I1 along with the corresponding resu l t s  fo r  
the two coals i n  methanol. 

Table 11. Surface Area of Coals Using Different Wetting Liquids. 

Coal Sample 

Colorado Subbituminous 
Gascoyne Red l ign i t e  

Surface Area (m2/gm) 
Yethanol Tetra1 i n 

>zoo 
165.72 

9.05 
5.15 

Since the tetrahydronaphthalene i s  a larger molecule than methanol, i t  i s  
unable t o  penetrate the  smallest pores in the  coal. Heat i s  only l iberated from the  
very large pores and the external o r  apparent surface as i f  the porous coal had 
transfoned into a non-porous carbon black. In future experiments the  use of probe 
liquids of intermediate molecular s izes  between those of methanol and 
tetrahydronaphthalene will y ie ld  information o n  the re la t ive  amounts (d is t r ibu t ions)  
of micro, transit ional and macropores. 
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Figure 3 .  Shows deta i l s  o f  one calorimeter. 

Figure 4.  Shows overall differential  calorimetry system. 
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Figure 1 .  The disassembled cell and a water-saturated solid sample o f  Gascoyne Red 
1 ignite. 

Figure 2 .  The assembled dielectric c e l l .  
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Figure 7. D i e l e c t r i c  c h a r a c t e r i s t i c s  o f  a subbituminous coal, showing e f f e c t  o f  
removal and replacement .o f  t i g h t l y  bound moisture. 
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Figure 8. The tenpera ture  dependence of t a n  6 i s  depicted f o r  t h e  water-saturated 
Gascoyne Red l i g n i t e .  
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Figure 9. The tenperature dependence of t a n  6 i s  depicted f o r  the air-dried 
Gascoyne lignite. 
coal .  
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Figure 10. Spectra for powdered Yampa subbituminous. 

144  



I, 

I,  

12 

10 

8 

Tan 6 
I 10' 

6 

4 

2 

c 
-130 -110 -110 -100 -90 -0 -70 -60 -SO 

renpentur. .C 

Figure 11. Spectra f o r  powdered Gascoyne Red l i g n i t e .  
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Figure 12. Charac te r i s t i c  o f  l i g n i t e  type coals .  
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F i g u r e  13. C h a r a c t e r i s t i c  o f  subbi tumi nws type coals .  
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