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Introduction

Dry-limestone injection provides an economically attractive means for SO, emissions
control in pulverized-coal-fired (p.c.) utility boilers. The process is especially
attractive as a retrofit for older boilers because of the potentially low capital
costs relative to other SO; control technologies (1). in addition, the raw material
is readily available and relatively inexpensive (2). Early demonstration tests,
however, met with 1ittle success. For example, acceptable levels of SO, removal could
not be achieved, even with a large stoichiometric excess of limestone (g).

In an attempt to enhance the capture of S0p, research has been conducted under
. conditions representative of full-scale systems (4,5). Fundamental experimental and
theoretical research has also been undertaken to examine the kinetics of calcination
and sulfation (6-11). ’

The present effort was undertaken to investigate the conditions which will optimize
S0 removal from flue gases by calcium-based dry sorbent injection. The conditions
explored included time, temperature, and sorbent type and preparation. Sorbents were
injected under experimental conditions which simulated, but did not duplicate, the
environment of a p.c. utility boiler. The goal was to provide an environment
representative of large-scale systems, but simultaneously well characterized, uniform
and reproducible.

The approach to the present study was to utilize a laboratory-scale apparatus to study
the sulfur capture reaction Ca0 + SOz + 0.5 O — CaSO4 under isothermal conditions in
a flame-gas environment designed to simulate the radiant zone of a p.c. boiler.
Powdered sorbents were injected and dispersed into a flow reactor doped with 3600 ppm
S02 and down-fired by a flat-tlame burner which provided residence times near 1.5 s
for temperatures from 900-1200°C. SOp sorption was measured as a function of time,
temperature, and sorbent characteristics.

Experimental

Reactor. The reactor s a dispersed-phase Isothermal Flow Reactor (ITR). The ITR
providés a relatively long (up to 3.0 s) isothermal zone in which sorbent chemistry
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can be studied as a function of time, vemperature, and environment. This reactor is
unique because it provides a large volume for dispersal of sorbents at reasonable feed
rates. This is necessary to permit solids sampling for chemical analysis within
practical time frames.

The ITR (Figure 1) is an electrically heated, gas-downfired drop-tube furnace. It has
a neated length of 90 cm and accommodates a 10-cm diameter alumina reaction tube.
Heating is provided by silicon carbide globars located in three independently
regulated heating zones 22.5- 45- and 22.5-cm long. The ITR has a maximum wall
temperature of 15009C.

The ITR is downfired by a porous bronze plug water-cooled flat-flame burner.
Limestone was injected into the ITR along the axis of the reactor through the burner.
The limestones were injected from a 1.1-mm i.d. tube, which produced a turbulent jet,
effectively dispersing the materials over a wide cross section of the.reactor.
Residence times and heating rates of the particle streams were calculated based on
confined jet mixing theory (12) and convective and radiative heat transfer
calculations. Heating rates were on the order of 10% K/s and total (end of reactor)
residence times of 1.2 - 1.6 s were employed in the experiments described here.
Solids sampling from the 1TR was accomplished with an isokinetic water-cooled
stainless steel probe. Sorbents were quenched rapidly and collected on a glass fiber
filter located at the base of the probe. The probe is 1.2 m long and enables sample
collection within 40 cm of the sorbent injection location.

Temperature profiles in the ITR are shown in Figure 2. Temperatures were measured
using a 0.025-mm diameter butt-welded supportaed type S thermocouple. Radiation
corrections to the thermocouple readings were applied only for non-isothermal reactor
conditions, otherwise the corrections were smaller than +59%K. The profiles in Figure
2 are all for hydrogen-air flames. Methane was the fueT used for flame temperatures
above 1350°C.

Sorbents. Limestone samples evaluated in this study are listed in Table 1. Each was
characterized both before and after injection using several analytical techniques
which are listed in Table 2. Most of the raw materials were analyzed for chemical
composition, particle size distribution, and specific surface area. Samples collected
from the reactors were analyzed for carbon (carbonate), hydrogen (hydroxide), total
sulfur (sulfate) and total calcium. From these measurements the extent of calcination
and calcium utilization {percent calcium as sulfate) were determined for most samples.
In addition, the ‘precalcined dolomite (D60) and precalcined Vicron 45-3 (V40) were
characterized by specific surface area and pore size distribution before and after
injection into the reactor.

Vicron 45-3 and D3002 served, respectively, as the baseline calcite and dolomite in
this stuay. They both are comparable in mean size, specific surface area and both are
high-purity minerals. It was from these limestones that the V40 and D60 precalcines
were produced. Surface areas indicated for the precalcines are typical. However, the
materials were produced in small batches and surface areas varied between batches.
The type S material is a pressure-slaked dolomitic lime.
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Table 1. PHYSICAL AND CHEMICAL PROPERTIES OF LIMESTONE SORBENTS

Chemical Analysis,
Mean Surface wt}
Size, Area

Material Composition m me/g Ca Mg
Yicron 45-3 CaCo3 11 0.6 39.0 0.49
D3002 Dolomite  CaC03°MgCO3 10 0.54 24.8 11.3
D60 Precalcine Ca0-Mgo - 60.67 —— ——-
V40 Precalcine Ca0 -- 41.45 -~ ---
Type S (Warner) Ca(QH)p*Mg(OH)p 1.0 18.20 28.0 15.9

Table 2. ANALYTLCAL PROCEDURES

PROCEDURES DETERMINATION
Brunauer, Emmeit, Teller Specific Surface Area
Ny absorption isotherm
Pekin-Elmer 2408 Carbon, hydrogen det. extent
of calcination, hydration
Leco SC32 Total Sulfur
ASTM D2795 Total Calcium
Chelometric Tritration
Sedigraph (X-ray Particle size distribution,
sedimentation) mean size
Mercury instrusion Pore size distribution, true
porisimetry porosity, porosity distribution
Resulys

Calcium utilization was measured as a function of residence time in the isothermal
reactor (ITR) for the five sorbents at temperatures of 900, 1000, 1100 and 1200°C. In
each case the initial S0y concentration in the burned gases was 3600 ppm and the
sorbent feed rate was adjusted to ensure a calcium-to-sulfur ratio (Ca/S) less than
1;‘0 sO that the measured calcium utilization would not be affected by SO, depletion in
the reactor.

Sorbeny Reactivity Ranking. At 900°C (Figure 3) the capture levels of the precalcines
and type S are all greater than those of the raw sorbents, D3002 and Vicron 45-3. In
part, this is due to the time required for the raw sorbents to calcine. At 1.6 s, the
D3002 is still taking up S0, while the V40 capture profile has leveled off. The type
S sorbent has a lower calcination temperature as well as a less endothermic
calcination reaction than the raw sorbents. It may in fact calcine so quickiy at
9_00°C that the calcination reaction presents no impediment to sulfation. Similarity
in the reactivities of D60 and type S might be an indication of the surface area
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attained by the type S material. The D60 and V40 are not expected to sinter (lose
surface area) rapidly at this temperature.

At 10009C (Figure 4) the relative order of reactivity has changed to Vicron 45-3 < V40
< D3002 < D60 < type S. This reflects a large increase in the relative reactivity of
D3002. At 1.5 s, the calcium utilization of D3002 is approaching that of the D60
precalcine and from 0.75 s on the V40 remains just about 10 percent more reactive than
Vicron 45-3. Both of the raw sorbents exhibit some delay in S0 uptake due to
calcination, but it is not as severe as that experienced at 9009C. All five sorbents
display a dramatic increase in reactivity between 900 and 1000°C.

At both 900 and 1000°C the data suggest that SO capture occurs rapidly at first. The
rate of sulfation then slows abruptly or, in some cases, approaches zero. Pore
structure analyses of the D60 and V40 precalcines suggests an explanation for this
behavior. The active surface area of the precalcines was found to occur in pores
about 80 and 130 AC in diameter for the D60 and V40 precalcines, respectively. These
pores represented porosities of 0.18 and 0.13 for the two sorbents. After low
temperature sulfation (to avoid sintering) to about 25% utilization the porosities
were reduced to 0.15 and 0.08 and the active pore diameter of the sulfated V40 was
reduced to about 100 A®. Thus, pore plugging reduces the accessibility of the active
sorbent surface to SO, thereby reducing the global sulfation reaction rate.

Temperature Effects. Figure 5 summarizes the ranking of reactivity of the five
sorbents as a runction of temperature. The data shown in Figure 5 were taken from
smootned-by-eye reactivity profiles at the residence time of 1.0 s. There is very
little uncertainty associated with the ranking in Figure 5 because the slopes of
calcium utilization profiles all were shallow at 1.0 s. What has not been taken into
account is the delay of the onset of sulfation for Vicron 45-3 and D3002 due to slow
calcination at 900 and 10009C. Accounting for the delay would alter the shapes of the
temperature/utilization profiles somewhat; however, it would not be reflective of the
ultimate result of low-temperature injection into a p.c. utility boiler where
calcination times may be a factor.

The most significant aspect of Figure 5 is the appearance of a maximum in the
utilization achieved as a function of temperature. The location of the true maximum
appears to be very near 10000C but may be different for each sorbent. Although such a
maximum might have been predicted as a result of the tradeoff between sintering and
reaction kinetics, there was no suggestion that it would occur at the same temperature
for five different sorbents.

Conclusions

For simultaneous calcination and sulfation under isothermal conditions, hydroxides and
precalcines had the greatest initial reactivity. At longer times and higher
temperatures, however, the advantages of precalcines diminished. In general,
dolomitic materials were more reactive than calcitic stones. The advantage of the
hydrated dolomitic lime may, in part, have been due to a small mean particle size.
For all materials the optimal calcination and sulfation temperature was 1000°C,
reflecting a balance of slow reaction kinetics at lower temperatures and sintering
(surface area loss) at higher temperatures. Conversion profiles exhibited a knee,
shifting from rapid to slow or zero rate of conversion, consistent with measured
internal pore plugging due to sulfation.
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Figure 3. Calcium utilization profiles for five sorbents at 900°C,
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