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Low-rank coals  may be success fu l l y  l i q u e f i e d  under pressure using CO o r  mix tures of 
CO and H 0 o r  CO and H Fol lowing a suggestion i n  t h e  l i t e r a t u r e  i n  1921 (l), 
Appel ad?  Wender i n  1 9 8 ' r e p o r t e d  conversions o f  bo th  bituminous coal and l i g n T t e  
w i t h  CO/H20 (2) .  The r e a c t i o n  w i t h  l i g n i t e  was found t o  be rap id ,  conve r t i ng  1:l 
l i g n i t e / H  0 tr benzenesoluble t a r  p l u s  gases i n  87% y i e l d  (maf) coal a t  2,000 p s i  
i n i t i a l  C?I pressure and 30°C. Successful continuous l i q u e f a c t i o n  o f  l i g n i t e  i n  a 
Process Development Uni t  f o r  28 day runs was demonstrated by Severson and cc-workers 
a t  t h e  Un ive rs i t y  o f  Nor th Dakota Chemical Engineering Department's P ro jec t  L i g n i t e  
(3, 3). 
(syngas) a t  about 440°C and 2,500 psig. The heavy product prepared was ca l l@% 
"Solvent-Refined L i g n i t e " ,  SRL. Batchelder and Fu evaluated some o f  t h e  syngas 
technology i n  1979 with respect t o  process canmerc ia l i za t i on  (5 ) .  

The U n i v e r s i t y  o f  Nor th Dakota Energy Research CentFr has continued t o  
i nves t i ga te  low-rank c o a l  l i q u e f a c t i o n  using mixtures con ta in ing  CO. The use o f  H2S 
along w i t h  syngas has resu l ted  i n  much improved processing (6). Recently. low 
temperature reac t i ons  (below 400°C) us ing  CO as t h e  reductant have shown exceptional 
pranise (7). 

Several mechanisms f o r  reduc t i on  reac t i ons  w i t h  CO have been proposed. Previous 
s tud ies a t  UNDERC have shown t h a t  CO apparently reac ts  m r e  r a p i d l y  w i t h  coal than 
does H , and t h a t  t h e  amount o f  CO t h a t  reac ts  increases as more as-received l i g n i t e  
i s  ad& (I). Whether t h e  CO reac ts  d i r e c t l y  w i t h  t h e  coal organic s t r u c t u r e  o r  
w i t h  the water i n  t h e  coal t o  produce H The c a t a l y t i c  e f fec t  
o f  coal ash on t h e  s h i f t  reac t i on  (CO 1 KO - C02 + H2) may also be a s i g n i f i c a n t  
f ac to r .  F i n a l l y ,  i t  has been suggested tha% hydrogen formed f r a n  c l o s e l y  bound coal 
water may be e s p e c i a l l y  a c t i v e  "nascent hydrogen" (2. 2). 

We c r i e d  out a h i g h  temperature study o f  t h e  r e a c t i o n  o f  i s o t o p i c a l l y  l a b e l l e d  
syngas ( CO/H2) with a Texas l i g n i t e  a t  450°C and 3400-3700 ps i  i n  coal -der ived 
so lvent  (10). This s tudy was designed t o  determine t h e  amount o f  CO incorpp5at ion 
i n t o  t h e  - d i s t i l l e d  products and hydrocarbon gases. C us 
seen, thus e l i m i n a t i n g  Fischer-Tropsch type react ions,  and d i r e c t  i nco rpo ra t i on  
I$act ions,  such as ca rbony la t i on  react ions.  The on ly  l abe l  l e d  product found was 

CO2. A t  that t i m e  we d i d  not examine t h e  i nso lub le  products f o r  13C 
incorporat ion.  

The present study was designed t o  i n v e s t i g a t e  low temperature react ions o f  three 
coa ls  of d i f f e r i n g  rank, B ig Brown Texas l i g n i t e ,  Wyodak subbituminous, and Porhatan 
bituminous coal, w i t h  pure CO. The cond i t i ons  chosen a lso provide base l i ne  data 
s imulat ing t h e  f i r s t  stage i n  a two-stage l i q u e f a c t i o n  process. Addi t ional  
development f a n a l y t i c a l  methods insured t h a t  each p a r t  o f  the product could be 

%/% r a t i o s  i n  each gaseous ca rbobcon ta in ing  product by GC/MS. 

Experimental 

Reactions were c a r r i e d  out i n  a m u l t i p l e  m in i reac to r  assembly designed f o r  
simultaneous use o f  up  t o  twelve 22 mL tubes. The s ta in less  s t e e l  tubes each 
contained a s t a i n l e s s  s tee l  s t i r r i n g  bar  which mixed s l u r r y  and gases khen the 
assembly was ag i ta ted  i n  a f l u i d i z e d  sand bath. F i ve  grams o f  a 40% as-received coal 
S l u r r y  i n  a coal -der ived recyc le so lvent  d i s t i l l a t e  was charged. Label led gas. 50/50 

During these runs t h e  we t ,  as-received coal was processed w i t h  50/50 CO/H 

i n  situ, i s  unknown. 

45 
No inco rpo ra t i on  o f  t h e  

am' ed forq3C i n c o r p o r a t i o n  and t h e  gases were more c a r e f u l l y  analyzed f o r  
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13CO/C0, o r  unlabelled CO gas was introduced, via a manifold system, t o  a pressure 
of 1,000 psig cold. The assembly was lowered in to  the  bath preheated to  the  
selected temperature, 300", 340°, o r  380°C f o r  1 h o u r ,  rapidly quenched t o  roan 
temperature, and allowed t o  equilibrate.  Gas weight was obtained by collecting the  
gas in a preweighed evacuated banb of known volume relative t o  the reaction 
vessel. 

The analysis scheme used i s  outlined in j g y f  1. Gas analyses were perfoned 
using an automated refinery gas analyzer and [C/ C r a t io s  for the  gaseous products 
were obtained using capillary GC/MS. 

A portion of the recovered product was extracted with tetrahydrofuran ( T H F )  and 
a second portion was microdistilled. A th i rd  portion of the  recovered product was 
extracted with CH C1 yf the solvent was renoved with a rotary evaporator a t  roan 
temperature. A 58 Mt?z C NMR spectrum was obtained for t he  CH2C12 soluble fraction 
using a gated pulse sequence w i t h  the  decoupler on only during data acquisition. 
Samples in C02C12 w i t h  TMS and C ~ ( A C A C ) ~  present were pulsed about two hours until 
the signal t o  noise ra t io  was adequate. These spectra were canpared with those of 
samples from reactions performed in the same manner w i t h  unlabelled CO. The CH2C12 
insoluble produ s were examined by 50 MHz Cross Polarization/Magic Angle Spinning 
(CP/MAS) solid f5C NMR employing to ta l  sideband suppression using TOSS dephasing and 
foldback pulsing before acquisition (11). These spectra were also canpared with 
those of products from reactions r u n  at-he same time w i t h  unlabelled CO. 

Results and Discussion 

The weights of product gas ,  THF insolubles, d i s t i l l a t i o n  residue, water, and a s h  
were used o calculate conversions for  these reactions. For the  purpose of t h i s  
experiment '3C0 and CO were assuned t o  react a t  the  same ra t e  so t h a t  labelled and 
unlabelled runs could be averaged to  obtain yield structures (Table I ) .  The low- 
rank coals gave be t te r  conversion a t  3OOOC b u t  the  Powhatan bituminous coal gave 
better conversions a t  340' d 380°C. 

t o  give eas i ly  recognizable labelled 
yjoducts because the natural abundance o f  i s  only 1.1%. 

C should double the  signal. When identical samples fo r  runs with unlabelled CO 
a r e  can red, an incorporation of only 0.5% should be recognized without d i f f icu l ty .  

ThePP3C spectra of the soluble and the insoluble products of labelled reactions 
were carefully canpared with those r u n  w i t h o u t  labelled CO. No differences were 
seen for any of the three coal products a t  300", 340'. or 380°C. A canparison of 
the  CH C1 insoluble solid spectra fran runs using labelled and unlabelled CO a r e  
shown ,2n Figure 2. 

Gas analyses fo r  sel ted ru by cap la ry  GC/MS and GC were used t o  
determine the r a t io s  of ?'CO t o  " C ~ n ~ ~ z 5 % 0  t o  l h C O  and the number of moles of 
each isotopic canpound in the product. mo5es of C02 tha t  was produced 
from CO was easily calculated since a 50% labelled '&O was used. The remaining COP 
produced was assumed t o  a r i s e  from the  coal,  t he  only other carbon source present. 
The number o f  moles of H2 found in the  product was less  than 1/5 the  moles of C02 
formed frcm CO during the reaction of the two low-rank coals a t  300°C. However, 
during reaction o f  the bituminous coa l ,  Powhatan ( P O W l ) ,  l e ss  C02 was formed from 
the CO added (Figure 3) .  possibly because the number of moles of water present in 
the charged coal,  POW1, was much smaller, h i c h  could limit the  s h i f t  reactions 
d u r i n g  the POWl liquefaction a t  300°C. The absence of coal moisture does not, 
however, limit the conversion of POWl by CO a t  higher temperatures, since water may 
be released by coal thermolysis a t  340" ard 380°C which could react readily with CO 

Tracer reactions w i t h  '%O a r e  expec 
An incorporation of 1% 

The nuke, 

(12). 
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Table I .  M u l t i p l e  M in i reac to r  Reactions o f  CO With 40% Coal S l u r r i e s  f o r  60 Minutes 
- 

Average Y ie ld  ( w t  % o f  maf coal  ) 
No. Runs Temperature, Soluble Average 
Averaged Coal "C Conversion Gas D i s t i l  l a t e  Residuum Closure 

5 BB1* 300 20 13.5 3.6 8 92 

3 WYOl** 300 24 18 3.7 16 95 

3 POWl*** 300 16 4.3 6.4 14 96 

2 BB1 340 62 24 11.8 27 95 

1 W Y O l  340 51 30.5 2.0 17.5 94 

2 POW1 340 83 29 6.2 46 88 

2 BB1 380 77 2 9.3 40 92 

2 W Y O l  380 72 39 -3.0 35 95 

2 POW1 380 87 26 1.9 59 101 

Solvent was UNDERC CPU Run 66 01160 D i s t i l l a t e .  

**WYOl - Wyodak, Wyoming subbituminous coal ,  8.37% ash, 24.03% water. 
*BB1 - B ig  Brown Texas l i g n i t e ,  8.12% ash, 24.40% water. 

***POW1 - Powhatan, Ohio bituminous coal , 10.78% ash, 2 .0Z water. 

2 !s rY  
No 1 3 C  i nco rpo ra t i on  . i n t o  products o t h e r  than  C02 was detected a f t e r  react ions o f  
B ig B r  n Texas l i g n i t e ,  Wyodak subbituminous coa l ,  o r  Powhatan bituminous coal w i t h  
50/50 *'CO/CO a t  300°, 340' or 380°C i n  recyc le  so lvent  f o r  1 hour. No evidence f o r  
a Fischer-Tropsch type mechanism, CO i n s e r t i o n ,  o r  carbonylat ion reac t i ons  was 
found. 

These data a re  cons is ten t  w i t h  a mechanism i n v o l v i n g  CO enter ing i n t o  the  s h i f t  
reac t i on  w i th  i n  s i t u  water. The d i f f e r i n g  response o f  t h e  coa ls  can be explained 
by invoking c o a l a s h  l i q u e f a c t i o n  and s h i f t  c a t a l y s i s  and t h e  amount o f  water 
i n t i m a t e l y  connected with each coal  ( 1 3  14). The change i n  response by PoJlatan a t  
h ighe r  temperatures may be due t o  a s i d t m e c h a n i s m  i n i t i a t e d  by water released from 
thermal reac t i ons  (12). The success o f  l ow  temperature CO l i q u e f a c t i o n  would no t  be 
unexpected i f  a s h 7 f t  r e a c t i o n  mechanism were i n  operat ion s ince  t h e  equ i l i b r i um 
constant f o r  t h e  s h i f t  r e a c t i o n  favo rs  H2 and C02 a t  lower temperatures. 
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F i g u r e  1. Analysis  scheme f o r  
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Figure  2. 5 0  MHz CP/MAS 13C NMR Spectra o f  
i n s o l u b l e  heavy ends from CO r e a c t '  n w i t h  
Big Brown l i g n i t e  ( t o p )  and 50/50 19CO/C0 
r e a c t i o n  w i t h  Big  Brown l i g n i t e  ( b o t t a n ) .  
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F i g u r e  3. Gaseous product d i s t r i b u t i o n  a t  300°C fran r e a c t i o n s  w i t h  50/50 13CO/0. 
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