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The current trend toward processing petroleum residua or
whole "heavy" crudes requires adequate compositional information to
understand the chemistry of reactions that are involved. Monitor-
ing compositional changes by a mere comparison of operationally
defined fractiong or by a determination of "average structures” for
feedstock and product components provides inadequate and frequently
misleading information. (1) Much more detailed compositional data
are needed to unravel the structural transformations which occur
during processing or to explain product properties.

This paper discusses recent results of characterization
work on "heavy" crudes and petroleum residua. The emphasis of this
paper is on distribution of homologous series of compounds, their
molar mass and structure, all as a function of boiling point. The
detailed discussion of the experimental procedures used in this
study is beyond the scope of this paper. It is important to note,
however, that the unique combination of short-path distillation,
high performance liquid chromatography (HPLC), and field ionization
mass spectrometry (FIMS) was essential for obtaining the detailed
compositional information which was not available before. The
nitrogen-rich, 13.6°API gravity, Kern River crude oil (a blend of
crudes from San Joaquin Valley, California) is used as an example.

EXPERIMENTAL

Kern River crude o0il was first distilled using a Penn
State column to produce two distillates, Cut 1 and Cut 2, and atmo-
spheric residuum (~650°F+). The residuum was then fractionated
into eight distillates, Cut 3 through Cut 10, and the nondistil-
lable residuum (~1300°F+) using the short-path distillation. The
detailed description of the short-path distillation apparatus,
DISTACT, can be found elsewhere. (2, 3) The true boiling point
(TBP) distributions of the distillation cuts were determined using
a vacuum thermal gravimetric analysis (VTGA) method developed at
Chevron Research. (4) The molar mass distributions of all cuts
were determined using FIMS and field desorption mass spectrometry
(FDMS). (5) The FIMS data were obtained at SRI International,

Encl. - Table I
Figures 1-8
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Menlo Park, California. Average molecular weights were determined
by vapor pressure osmometry (VPO) using toluene as a solvent.
Carbon (C), hydrogen (H), sulfur (S), total nitrogen (Nt), basic
nitrogen (N, ), and oxygen (0Q) were determined using standard proce-
dures. Nickel (Ni), vanadium (V), and iron (Fe) were determined by
inductively coupled plasma (ICP) emission spectroscopy method.

Chromatographic separations of all distillation cuts
involved a two-step procedure. First, a fraction of polar compo-
nents (mainly N-, O-, and metal-containing compounds) was isolated
from each distillation cut before further HPLC separation to pre-
vent possible damage of high efficiency columns. "Polars" were
separated using liquid chromatography on basic alumina. 1In the
second step, the "polars-free"” fraction was further separated into
saturates, monoaromatics, diaromatics, triaromatics, tetraaro-
matics, pentaaromatics, and a fraction designated "hexaaromatics
and/or azarenes."

The HPLC system consisted of two preparative columns,
ZORBAX-NH, and ZORBAX~SIL, connected through a switching valve.
The system was calibrated using model compounds. The actual cut
points between the aromatic ring-type fractions were determined
using ultraviolet (UV) spectra collected from 200-400 nm by the UV
photodiode array detector at 20-sec. intervals. Weight percent
yields of the fractions were determined gravimetrically. The HPLC
fractions were analyzed by FIMS. The principles of the HPLC/FIMS
approach and its application to characterization of coal-derived
liquids were reported previously. (6-8) However, a different HPLC
system was_used in_this study. Elemental analysis, infrared spec-
trometry, “H and C nuclear magnetic resonance (NMR) spectrometry,
and EIMS were used occasionally to aid interpretation of the
HPLC/FIMS data.

RESULTS AND DISCUSSION

How Heavy is the
"Heavy" Crude 0il?

The adjectives "heavy," "high boiling,® and "“high molecu-
lar weight" are commonly but inappropriately used as equivalent
terms to describe crude oils or their fractions. The term “heavy"
refers to crude oil density. Heavy crudes, of which Boscan
(10.1°API gravity in Figure 1) is a classic example, have high
densities (low °API gravities) because they are rich in high
density naphthene-aromatics and heteroatom-containing compounds and
poor in low density alkanes. They are commonly either immature or
degraded. (9) Light crudes, which have low densities (high °API
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gravities) are rich in alkanes. Altamont crude oil (42.2°API grav-
ity in Figure 1), an extreme example, has an exceptionally high
alkane content as a result of its predominant source being lacus-
trine algae, which also happens to have been the source of the
nearby Green River shale. (9)

For each of the crudes considered in Figure 1, the °API
gravity decreases with increasing depth of distillation. Hence the

-term "heavy ends®™ tends to correlate with "high boiling™ within a

given crude. However, the correlation between "heavy" and "high
boiling®" does not necessarily hold if different crudes are being
compared. For example, the nondistillable residuum (~1300°F+) from
Altamont crude has a lower density (higher °API gravity) than whole
Boscan, Kern River, or Maya .crude.

The terms "heavy" and "high boiling™ are frequently but
incorrectly used as if they were synonymous with "high molecular
weight." The boiling point of a compound at a given pressure is a
rough measure of the attractive forces between the molecules.
These forces v.ry with the structure of molecules, leading to the
great differences in boiling point for compounds of a given molar
mass but a different chemical structure. This is illustrated in
Figure 2. Compounds having similar molar masses cover a broad
boiling point range and, conversely, a narrow boiling point cut
contains a wide molar mass range. The molar mass range increases
rapidly with increasing boiling point, as illustrated by the
extended curves "A" and "C" at the right side of Figure 2. For a
given class of compounds, the boiling point increases with molar
mass. This is due to the increase of the weak, van der Waals
attractive intermolecular forces as molecules of a given type .
become larger. However, compounds having fused aromatic rings and
functional groups capable of hydrogen bonding or other types of
polar interactions have additional attractive intermolecular forces
and may have a relatively low molar mass but a high boiling point
and thus are expected to concentrate in the "heavy ends.”

Figure 3 shows boiling point, molar mass, and heteroatom
distributions in Kern River petroleum. The apparent molar mass
distributions of all distillation cuts, including the nondistil-

.lable residuum, were measured by FIMS and FDMS. The results

obtained by both techniques were in very good agreement. The molar
mass distributions are illustrated in Figure 3 by using the molar
mass scale as a radius of each "slice.®™ The radius of the inner
circle corresponds to the lowest molar mass of that cut while the
radius of the outer circle extends to the highest molar mass

value. A significant trend can be observed. The molar mass range
of the successive distillation cuts widens with increasing boiling
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point in a fashion that is consistent with the trend indicated by
the curves in Figure 2. The low molar mass end of each cut (radius
of the "hole" in each slice) shows only a moderate increase with
increasing boiling point while the high molar mass end soars. The
resulting significant molar mass overlapping between the cuts is
mainly due to the increasing concentration of polynuclear aromatic
and heteroatom-containing compounds which have high boiling points
but relatively low molar masses.

Interestingly, most of these heavy crude components do L
not exceed a molar mass of about 1500 and only a few have molar
masses extending up to about 1900. The molar mass data for
Rern River crude oil are in agreement with the previously reported
results for other crudes (10-12) and provide further support for
the early speculations by Dean and Whitehead (13) who suggested a /
molecular weight maximum of 2000 for all compounds in petroleum. |

Data in Table I give distributions of elements (C, H, N, :
S, 0, Ni, and V) on a molecular basis. The decreasing Z value in
the general formula CH,, ,,X for each successive cut indirectly
indicates the increasing "aromaticity." The C number range and the
concentration of heteroatom-containing molecules also increase with
increasing boiling point. For example, the low boiling Cut 1
(385-499°F) consists of molecules having about 10-14 C atoms, with
only two molecules in 100 containing S and one in 1000 containing a
N atom. The high boiling Cut 5 (795-943°F) involves molecules
having about 18-48 C atoms and on the average every other molecule
may contain a heteroatom. The nondistillable residuum has the
highest concentration of heteroatoms and shows the greatest H
deficiency (lowest Z value) among all distillation cuts. One must
bear in mind, however, that the above are only average estimates
which cannot reveal the actual distribution of heteroatoms in the
diverse molecules present in each cut.

What are the Components
of a "Heavy" Crude 0il?

The complexity of petroleum increases rapidly with
increasing boiling point as the result of the increasing number of
atoms in a molecule and the immense number of their possible struc-—
tural arrangements. It has long been recognized that compositional
analysis of high boiling petroleum fractions by the isolation of
individual compounds is a practical impossibility. (14) Instead,
many attempts have been made to separate those complex mixtures
into groups or classes of compounds. Numerous separation methods
and schemes have been developed over the years. (15) One of the
most recent systematic studies on composition of petroleum high
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boiling distillates and residua was the American Petroleum
Institute Research Project 60 and the later work based on the char-
acterization scheme developed under this project. (10-12, 16-22)

Petroleum components can be viewed as two major groups of
compounds, namely, hydrocarbons and nonhydrocarbons. Hydrocarbons
include acyclic alkanes (paraffins) and cycloalkanes (naphthenes),
both commonly referred to as saturates, and the third group known
as aromatics. Most of the aromatics bear normal or branched chains
and naphthenic cycles. A molecule containing one aromatic ring is
regarded as monoaromatic, a molecule with two aromatic rings--
diaromatic, etc., even if several naphthenic rings and side chains
are attached to the aromatic ring. In the same manner, naphthenes
containing both saturated rings and chains are defined by the
number of rings, i.e., monocyclic, dicyclic, etc. Nonhydrocarbons
include compounds which in addition to C and H atoms also involve
one or several heteroatoms such as S, N, 0, Ni, V, and Fe.

A complete separation of hydrocarbons from nonhydrocar-
bons in high boiling petroleum fractions is not possible.
S-containing compounds which during chromatographic separations
behave similarly to hydrocarbons of the equivalent molar structure
(i.e., dibenzothiophene and fluorene) are commonly found in hydro-
carbon fractions. Some N heterocycles (azarenes), particularly
those with the N atom sterically hindered or N-substituted, also
frequently interfere with hydrocarbons. Nonhydrocarbons having
"polar" functional groups such as -COOH, -OH, -NH, C=0 or those
containing several heterocatoms in a molecule (i.e., metalloporphy-
rins) are less difficult to separate from hydrocarbons.

The separation method used in this study produced up to
eight "compound-class" fractions from each distillation cut depend-
ing on the cut composition. The fraction of "polars" which is
regarded as a concentrate of mainly N~, O-, and metal-containing
species was separated from each cut prior to further separations of
the remaining "polars-free" portion into saturates, monoaromatics,
diaromatics, triaromatics, tetraaromatics, pentaaromatics, and a
fraction designated "hexaaromatics and/or azarenes." The last
fraction reflects the difficulty in separating polycyclic aromatic
hydrocarbons having six or more rings from azarenes.

It is importaﬁt to note, however, that even the most
sophisticated HPLC system cannot provide a complete separation and
the adjacent fractions therefore show some overlapping. This, how-
ever, is detected by the following FIMS analysis of the fractions.
The FIMS provides further "separation" into various homologous
series according to the 2z value in the general formula CHj,,, and
reveals the molar mass (C number) distribution of the components.
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The structural assignments are based on the HPLC retention data, UV
spectra (for aromatics), and if necessary are aided by such analyt-
ical techniques as 1H and 13C NMR, and EIMS.

Figures 4, 5, and 6 show examples of the HPLC/FIMS analy-
ses for distillate Cuts 2, 6, and 10, respectively. Only a few
most prominent homologous series are presented. Most likely struc-
tures are shown although various isomers are possible. The exten-
sive compositional information provided by this analytical approach
is evident. Of particular importance are series of polycyclic
molecules many of which are related to steroid and terpenoid struc-
tures ranging from the saturated form to various stages of
aromatization.

The earlier discussed effect of chemical structure on
molar mass distribution for components of a given distillation cut
is illustrated in Figure 5. The molar mass profile of acyclic
alkanes shows the maximum at C39 while that -of the pentaaromatic
CpHop-3p series has the maximum at C35. Molar mass profiles of
"polars”™ (not shown) were "shifted"™ even further toward lower molar
mass values than those of the corresponding hydrocarbons but showed
similar patterns in terms of wide C number distributions. The
interpretation of the FIMS data for "polars” is much more difficult
than in the case of hydrocarbons, particularly if more than one
heteroatom per molecule is involved. Infrared and NMR data,
together with elemental analysis results, provided important addi-
tional information. Compounds having pyrrolic NH groups (i.e.,
carbazoles) and amide types were found to be particularly
abundant. Although various homologous series were identified, the
results indicate the need for further separation of "polars" to
facilitate the interpretation of data.

Figure 7 shows distributions of various "compound-class”
fractions in the heavy Kern River crude oil. The concentration of
"polars" increases steadily with increasing boiling point from zero
in Cut 1 to about 82 wt % in the nondistillable residuum. Notably,
"polars” in the distillable portion (Cut 1 through Cut 10) account
for over 42% of total "polars" present in this heavy crude oil.

The wmono- through pentaaromatics and the fraction designated "hexa-
aromatics and/or azarenes," together show a peculiar distribution
pattern with two minima, one at the top and the other at the bottom
of the barrel. The concentrations of individual fractions vary in
each successive distillation cut. The mono- and diaromatics
predominate in the low boiling cuts. It is worthwhile noting,
however, that the composition of the individual fractions within
these classes changes considerably with increasing boiling point.
For example, the monoaromatics in Cut 2 are rich in di- and
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tricyclomonoaromatics (homologous series CpHy,_ g and CpHyp_yp)
while the monoaromatics in Cut 4 .involve mainly tri-, tetra-, and
pentacyclomonoaromatics (homologous series CH,,_19r ChHop-12, and

CnHap-14) -

The data in Figure 7 show a dramatic decrease in satu-
rates with increasing boiling point from about 88 wt % in Cut 1 to
only about 1 wt % in the nondistillable residuum. Similarly, as
with other compound-class fractions, the composition of saturates
changes with increasing boiling point. This is illustrated in
Figure 8 which shows distributions of the alkane homologous series
in the entire Kern River crude oil. Acyclic alkanes (paraffins)
are almost completely absent in this degraded heavy crude oil. The
concentrations of tetra-, penta-, and hexacyclics increase with
increasing boiling point at the expense of mono-, di-, and tri-
cyclic alkanes. Steranes and hopanes were found to be particularly
abundant in Cuts 3 through 6.

CONCLUSIONS

Data derived from this study dispel many misconceptions
about the composition of high boiling components in petroleum. The
results presented show that the molecular structure more than
molecular weight of petroleum components predominantly determines
the boiling point distribution and density (°API gravity) of the
crude oil. The majority of compounds found in the "heavy" Kern
River crude oil have molar masses not exceeding about 1500 with
only a few extending up to about 1900. They involve mainly
polycyclic structures with varying degree of aromatization, and
many of them contain N and O atoms with pyrrolic and amide types
prevailing.

The results of this study also demonstrate the necessity
of a high degree of sample fractionation in order to obtain mean-
ingful compositional information.
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FIGURE 7
COMPOUND-CLASS DISTRIBUTIONS IN KERN RIVER PETROLEUM

Concentration, Wt %
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*Unrecovered material during chromatographic separations.
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FIGURE 8

DISTRIBUTIONS OF ALKANE HOMOLOGOUS SERIES IN

KERN RIVER PETROLEUM

Concentration, Wt %
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