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INTRODUCTION 
To b e t t e r  understand the c o a l i f i c a t i o n  process, we have conducted numerous 

s tudies  ( 1 - 4 )  of t h e  chemical s t ruc tu ra l  composition of xylem t i s s u e  from 
gymnosperm wood and r e l a t ed  woods t h a t  has been coa l i f i ed  t o  vary in  degrees. 
These previous s tud ie s  have r e l i ed  primarily on use of so l id - s t a t e  p3C nuclear 
magnetic resonance methods t o  obta in  average chemical s t r u c t u r a l  information as 
wood is buried i n  pea t  and then transformed t o  coal.  
xylem t i s s u e  from modem wood buried i n  peat. x y l i t e  brown coal. l i g n i t i c  wood, 
subbituminous coa l i f i ed  logs, and from severa l  logs  of high v o l a t i l e  bituminous 
coal rank. 

the  chemical nature of buried and coa l i f i ed  xylem t i s sue  a t  t he  molecular 
leve l .  To achieve t h i s ,  w e  employed pyro lys i s /gas  chromatography (py/gc) and 
pyrolysis/gas chromotography/mass spectrometry (py/gc/ma) . Pyrolysis 
techniques have been used t o  examine peat,  coa l ,  coa l i f i ed  wood, and r e l a t ed  
substances (5-7). However. t he  technique has not been previously applied t o  a 
systematic and h is to logica l ly- re la ted  s e r i e s  of coa l i f i ed  woods. 
pa r t i cu la r ly  useful t o  com are the  r e s u l t s  from pyro ly t ic  s tud ie s  with t h e  data 
obtained from so l id-s ta te  p 3 C  NMR ( 1 - 4 . 8 ) .  

The samples included 

The s tud ie s  presented here. a cont inua t ion  of t h e  above s tudies .  examine 

It i s  

Approximately 0 . 2  mg of dry, powdered sample of modem buried wood and 
coa l i f i ed  xylem t i s sue ,  whose na ture  and rank were described i n  earlier repor t s  
( 2 - 4 ) .  were weighed i n t o  a quar tz  cap i l l a rg  tube  and placed i n  the  c o i l  of a 
Chemical Data Systems Model 120 Pyroprobe.* 
inser ted  i n t o  the  i n j e c t i o n  por t  of e i t h e r  a Perkin-Elmer Sigma 3B or a Varian 
2700 gas chromatograph. 
280%. The Perkin-Elmer gas  chromatograph, f i t t e d  with a 25 m x 0 .25  mm i .d  
fused si l ica column (HP-17) coated with a crosslinked 50 percent phenylmethyl- 
s i l i cone  l i q u i d  phase, was used s t r i c t l y  f o r  py/gc using a flame ioniza t ion  
de tec tor  (FID) whose output was recorded with a Perkin-Elmer Sigma 15 recording 

* b y  use of t rade  names is  f o r  descr ip t ive  purposes and does not imply 
indorsement by t h e  U.S. Geological Survey. 

The probe, with sample. was 

The in j ec t ion  por t  temperature w a s  maintained at  
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in tegra tor .  
but t h e  e f f luen t  stream w a s  s p l i t .  One pa r t  of t he  e f f l u e n t  vag swept by means 
of a helium make-up gas  i n t o  a j e t  separa tor  and i n t o  the  source of a DuPont 
490B mass spectrometer. The o the r  par t  of t h e  e f f luen t  was routed t o  an FID 
in te r faced  t o  a Perkin-Elmer Sigma 10 recording in tegra tor .  

chromatograph was heated a t  8OC/min t o  300°C t o  sweep out  compounds v o l a t i l e  at  
injection-port  temperatures. Af t e r  cooling t o  roan temperature and applying 
l i qu id  nitrogen t o  the  f ron t  end of a por t ion  of the  fused-s i l ica  column, the  
sample was pyrolyzed a t  61OoC f o r  10 sec. 
temperature-programmed from 4OoC t o  300°C a t  4OC/min. 

gc/ms system equipped wi th  an iden t i ca l  Chemical Data Systems pyroprobe and 
s imi l a r  column as  above (25m x 0.25mm SGE. BP-5). Samples were f l a s h  
pyrolyzed a t  a f i lament  temperature of 71OoC f o r  20 sec. P r i o r  t o  
temperature-programming (2Oo-8O0C a t  8OC/min) t h e  column was he ld  a t  2OoC fo r  5 
min. 
Compounds were i d e n t i f i e d  by comparing r e l a t i v e  r e t en t ion  times wi th  pyro lys i s  
da ta  i n  the  l i t e r a t u r e  (9) and by comparison t o  mass spec t r a  from the  EPA/NIH 
l i b r a r y  a s  well a s  from published data (10). Gas chromatographic peak areas 
f o r  i den t i f i ed  compounds were measured as a percentage of t h e  t o t a l  peak a rea  
ca lcu la ted  by summing areas f o r  all peaks. No cor rec t ions  were made for FID 
response f ac to r s .  

The Varian gas chromatograph was f i t t e d  wi th  t h e  same column 

Following i n s e r t i o n  of t h e  pyroprobe i n t o  the  i n j e c t i o n  por t ,  t he  gas 

The column was immediately 

Further py/gc/ms ana lyses  were performed on a Hewlett-Packard 5970B/5890 

Af ter  reaching EO0. t he  column was programmed t o  31OoC a t  4OC/min. 

RE.SUT.TS - - - - 
Peat and Brown Coal 

Representative vy/gc chromatograms f o r  mmnosperm xylem t i s s u e  buried in  _ -  - I 

peat and brown coa l  xyli te a r e  shown i n  Figure 1.- The s o l i d - s t a t e  l3C NMR 
spec t ra  f o r  these  samples a r e  shown i n  Figure 2. The buried gymnosperm xylem 
t i s sue  was shown t o  be e s s e n t i a l l y  l ign in- l ike  i n  composition (3) as indica ted  
by the  NMR peaks a t  5 6 ,  120. 135. and 148 ppm. The peaks at 72 and 106 ppm. 
minor cont r ibu tors  t o  t h e  t o t a l  peak area,  i nd ica t e  t h a t  much of t he  ce l lu los i c  
material o r ig ina l ly  present  i n  t h e  unaltered wood has been degraded and l o s t  
during bu r i a l ,  as  shown by Hedges et &.. (9).  Hatcher et &. (11). and Spiker 
and Hatcher (12). 
e s sen t i a l ly  those c h a r a c t e r i s t i c  of softwood l i g n i n  (13). Guaiacol. 4-methyl 
guaiacol. 4-ethylguaiacol, 4-vinyl guaiacol,  s - i s o e u g e n o l .  acetoguaiacone. 
and trans-coniferyl alcohol are the  major py/gc components. 
phenol, c r e so l ,  and ca techol  a s  w e l l  a s  the r e l a t i v e l y  l a rge  amounts of 
coni fe ry l  alcohol a t t e s t  t o  t h e  f a c t  t h a t  t h e  l i g n i n  is r e l a t i v e l y  undegraded 
(13). Peaks d i r e c t l y  r e l a t e d  t o  lignin-derived products methoxyphenols) 
account f o r  about 95% of the t o t a l  peak areas i n  buried wood. The broad peak 
t en ta t ive ly  i d e n t i f i e d  a s  t h a t  of 
carbohydra te - lee  ma te r i a l  is  present,  cons i s t en t  with the NMR data. 

Brown coal xy l i t e .  a log  belonging t o  t h e  Podocsrpacea family co l lec ted  
from the Pallourn seam, Morwell. Victoria,  Aus t ra l ia ,  shows an NMR spectrum 
t h a t  i s  only s l i g h t l y  d i f f e r e n t  from t h a t  of modern buried wood (Figure 2) .  
The pr inc ipa l  d i f f e rences  a r e  f o r  the  i n t e n s i t y  of methoxyl carbons a t  56 ppm 
and the peak a t  115 ppm f o r  protonated aromatic carbons ortho and pate t o  
aryl-0 carbons. The smal le r  amount of methoxyl carbons r e l a t i v e  t o  t o t a l  
aromatic carbons (100-160 ppm) f o r  the  brown coal Hylite.  compared t o  the  
modern buried wood, is an  ind ica t ion  t h a t  methoxyl groups have been l o s t  from 
l i g n i n  s t ruc tures .  
had approximately the  same amounts of methoxyl groups per aromatic ring as 

The py/gc da ta  confirm t h i s  as the  peaks i d e n t i f i e d  a r e  

The low amounts of 

levoglucosan ind ica t e s  t h a t  some 

This assumes t h a t  t h e  l i g n i n  of coniferous wood o r ig ina l ly  
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l i g n i n  from modern buried wood. 
hydrate carbon. is  s ign i f i can t ly  reduced i n  r e l a t i v e  in t ens i ty  compared t o  t h a t  
i n  the  spectrum of buried wood. 

methoxylated phenols a r e  still major components. Guaiacol, 4-methylguaiacol, 
4 ~ ~ n y l g u a i a c o l .  and ~ - i s o e u g e n o l  a r e  the  four  l a r g e s t  components l i k e  i n  
the  pyrogram fo r  modem buried wood. Other l ignin-derived methoxyphenols 
found i n  buried wood a r e  a l s o  present;  however. t he  y i e l d  of these l i g n i n  
phenols normalized t o  t o t a l  phenols is  88 percent,  s l i g h t l y  less than t h a t  of 
buried wood. Phenol and t h e  c re so l s  are r e l a t i v e l y  l a r g e r  peaks in  pyrograms of 
brown coal x y l i t e  compared t o  buried wood (Figure 1). This is evident from the  
r a t i o  of l i g n i n  phenols t o  simple phenols. 
r a t i o  i s  high but i n  the  brown coal x y l i t e  sample i t  drops t o  approximately 
ha l f  of t h e  value f o r  t h e  modern buried wood. 
by NMR and normalized t o  t o t a l  aromatic carbon i n t e n s i t y  a l s o  decreases by 
ha l f .  
groups or t ha t  methoxylated phenols a r e  being se l ec t ive ly  l o s t  during 
Coal i f ica t ion .  
smaller cont r ibu tors  t o  t o t a l  phenol y i e l d s  on pyro lys i s .  

The peak a t  72 ppm. mostly t h a t  of carbo- 

The py/gc da ta  f o r  t he  x y l i t e  brown coa l  (Figure 1) confirm t h a t  

In the  modem buried wood t h i s  

The methoxyl content determined 

This i nd ica t e s  t h a t  e i t h e r  aromatic r ings  i n  l i g n i n  a r e  lo s ing  methoxyl 

E i the r  way, t he  end r e s u l t  i s  t h a t  l i g n i n  phenols are becoming 

Ligni tes  

that shows a progressive 106s of methoxyl carbon when compared t o  spec t r a  of 
l i g n i n  o r  brown coal xylite. 
from various loca l e s  along the  eas t e rn  United S ta t e s  (2.4). and a 
representa t ive  NMR spectrum is shown i n  Figure 3 f o r  a sample co l l ec t ed  from 
the  Patapsco Formation (Cretaceous) near Landsdowne. Maryland. The aryl-0 
carbons a t  150 ppm a r e  major contributors.  and t h e  area f o r  t he  peak a t  56 ppm 
f o r  methoxyl carbon is  s m a l l  compared t o  the  a rea  f o r  aryl-0 carbons a t  146 
ppm. 
phenols. 

nearly the  same f o r  l i g n i t e  logs  as it is i n  the  modem buried wood. 
of the a rea  f o r  t h e  peak of 146 ppm t o  t h e  t o t a l  aromatic carbon a r e a  
(100-160ppm) shows t h a t  approximately 2 aryl-0 carbons a r e  present per  aromatic 
ring. 
attached oxygen (1/3 of aromatic carbons) does not  change from buried wood t o  
l i g n i t e  even though a prec ip i tous  dec l ine  i n  methoxyl groups is observed. 

demethylation reac t ion  r a t h e r  than demethoxylation and t h e  r e su l t an t  chemical 
s t ruc tu res  would resemble catechol-l ike s t ruc tu res .  

The pyrolysis da ta  f o r  l i g n i t i c  gymnosperm woods is  cons is ten t  w i th  the  NMR 
data  showing l o s s  of l ign in- l ike  components (Figure 4).  
4-methylguaiacol. 4-vinylguaiacol. and ~ - i s o e u g e n o l  a r e  s ign i f i can t  peaks 

components than they a r e  i n  buried wood o r  brown coal x y l i t e .  
eugenol and isoeugenols i n  l i g n i t i c  1086 i s  evidence t h a t  l i g n i n  e x i s t s  i n  
nearly unaltered form wi th  the  propyl s i d e  chain preserved. 

Though methoxyphenols account f o r  about ha l f  of t o t a l  phenols. t h e  presence 
of simple phenols such as  phenol, t he  c reso ls .  and dimethylphenols i nd ica t e s  
t h a t  coa l i f i ca t ion  l'eads t o  the  production of phenolic s t ruc tu res  and these  
most l i k e l y  o r ig ina t e  from methoxyphenols. As discussed above, the NMR data  
suggest t he  formation of catechol-l ike s t ruc tu res  from t h e  guaiacyl u n i t s  i n  
gymnosperm l ign in  v i a  demethylation. 
presence of catechol,  as has been reported i n  o the r  l i g n i t i c  1086 (14).  

Gymnosperm wood coa l i f i ed  t o  a rank of l i g n i t e  d i sp lays  an NMR spectrum 

The samples examined a r e  l i g n i t i c  1086 col lec ted  

This ind ica tes  t h a t  methoxylated phenols are minor compared t o  o ther  

In t ens i ty  of t h e  peak a t  146 ppm. compared t o  t o t a l  aromatic i n t ens i ty ,  is 
A r a t i o  

This i nd ica t e s  t h a t  the  proportion of aromatic carbons having an 

I This 
I l o s s  of methoxyl groups and r e t en t ion  of aryl-0 most l i k e l y  involves a 

Peaks f o r  guaiacol. , 
r but phenol. t he  c reso ls ,  and dimethylphenols a r e  much more s i g n i f i c a n t  

The presence of 

The pyro lys i s  da t a  show evidence f o r  t he  
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The presence of s i g n i f i c a n t  amounts of catechol only i n  l i g n i t i c  logs  ind ica t e s  
i t  might be d iagnos t ic  of s p e c i f i c  s t ruc tu ra l  intermediates i n  the  conversion 
of l i g n i n  phenols t o  t h e  aromatic s t ruc tu res  t h a t  a r e  dominant i n  most coals. 
Subbituminous Coal 

GynmoG-em t i s s u e  of subbituminous coa l  rank from several samples 
shows a c h a r a c t e r i s t i c  13C NMR spectrum, and Figure 3 depic t s  a representa t ive  
NMR spectrum f o r  a sample co l lec ted  from t h e  Doswell Formation (Tr iass ic )  near 
Taylorsv i l le ,  Vi rg in ia .  
but aryl-0 carbons appear as a s m a l l  peak at about 150 ppm. The i n t e n s i t y  of 
t h i s  aryl-0 peak is s i g n i f i c a n t l y  less than i n  l i g n i t e  samples described above. 
The ca lcu la ted  i n t e n s i t i e s  suggest t h a t  approximately one i n  s i x  aromatic 
carbons have an a t tached  oxygen, a s t rong  ind ica t ion  t h a t  simple phenols a r e  
primary chemical s t r u c t u r a l  elements. 
carbon is a l s o  c h a r a c t e r i s t i c  of s p e c i f i c  s t r u c t u r a l  arrangements. In  l i g n i t i c  
logs  the peak is  a t  146 ppm. a chemical s h i f t  c h a r a c t e r i s t i c  of two aryl-0 
carbons adjacent t o  each o the r  as  i n  methoxyphenols and catechols.  For logs of 
subbituminous coal rank t h i s  peak s h i f t s  t o  153 ppm which is c h a r a c t e r i s t i c  of 
aryl-0 carbons having no ad jacent  aryl-0 carbons such as simple phenols. The 
lack  of s i g n i f i c a n t  i n t e n s i t y  i n  the  N13R region of 50 t o  100 ppm suggests t h a t  
few oxygen-substituted a l i p h a t i c  carbons a r e  present  and t h a t  methoxyl groups 
a r e  gone. This suggests t h a t  the  propyl s ide  chain of l i g n i n  has beewmodified 
and t h a t  methoxyphenols are no longer present.  

The py/gc da ta  (Figure 4) confirm t h e  above NMR observations as t h e  primary 
pyro lys i s  products ( g r e a t e r  than 50 percent of t o t a l  pyro lys i s  products) a r e  
phenol. t h e  c re so l s ,  dimethyl phenols, C3-phenols. and Cq-phenols. Using 
py/gc/ms w e  were unable t o  de tec t  t he  presence of methoxyphenols c h a r a c t e r i s t i c  
of l i g n i n  o r  t h e  ca techols  as  observed i n  l i g n i t e .  It  is  l i k e l y  t h a t  t h e  
phenols o r ig ina t e  from l ign in  s t r u c t u r a l  un i t s ,  but these have been modified by 
loss of methoxyl groups. The l ack  of ca techol  i n  pyro lys i s  products of 
subbituminous logs  sugges ts  t h a t  t he  catechol-l ike s t ruc tu res  thought t o  be i n  
l i g n i t e  have been converted t o  phenol-like s t ruc tu res  v i a  loss of one hydroxyl 
group per aromatic r ing .  
show an average of 1 aryl-0 carbon per aromatic ring. 

peak i n  the  pyrogram of subbituminous logs  is i d e n t i f i e d  as  an unresolved 
mixture of 2.4-dimethylphenol and 2.5-dimethylphenol. 
suggest t h a t  t he  major cont r ibu tor  t o  t h i s  peak i s  2.4-dimethylphenol. 
overwhelming amount of 2.4-dimethylphenol. compared with o ther  dimethylphenol 
isomers. ind ica t e s  t h a t  a s p e c i f i c  s t r u c t u r a l  arrangement i s  re ta ined  during 
a l t e r a t i o n  of ca techol - l ike  s t ruc tu res  t o  phenol-like s t ruc tures .  

The primary peak is  f o r  aromatic carbons at  130 ppm. 

The exact chemical s h i f t  of t h i s  aryl-0 

This i s  e n t i r e l y  cons is ten t  with the  NMR data  which 

The major py ro lys i s  products a r e  phenol and the  cresols.  bu t  an in tense  

The py/gc/ms da ta  
The 

DISCUSSION 
Py/gc and pylgclms have proven t o  be va luable  techniques f o r  charac te r iz ing  

the  chemical composition of coal and coal macerals (5.6.9.14-16). Applying 
t h i s  technique t o  a series of h i s to logica l ly- re la ted  coa l i f i ed  logs  t h a t  
increase  progress ive ly  i n  rank has allowed us t o  char t  t h e  evolution of l i gn in  
from modern buried wood t o  subbituminous coal.  Because the  xylem t i s s u e  from 
each of t h e  samples is  from gymnosperm wood, w e  can be reasonably ce r t a in  tha t  
each sample has organic matter derived from a common component, namely l i g n i n  
composed primarily of guaiacyl s t r u c t u r a l  un i t s .  Accordingly. we can make 
comparisons among the  samples and specula te  on the  chemical transformations 
t h a t  must have occurred during c o a l i f i c a t i o n  of t h i s  gymnosperm l ign in .  Of 
course. we must assume t h a t  extraneous substances derived from non-lignin 
sources have not  been incorporated t o  any s ign i f i can t  ex ten t .  



Both the  pyro lys i s  da ta  and t h e  NMR data  shovn he re  and recent s tud ie s  
(10.11) convincingly show t h a t  wood buried i n  pea t  and i n  sediments has 
se l ec t ive ly  l o s t  most of i t s  c e l l u l o s i c  components and has re ta ined  l i g n i n  i n  a 
r e l a t i v e l y  in t ac t  form. Consequently, we f e e l  t h a t  ce l lu lose  does no t  play a 
major r o l e  i n  coa l i f i ca t ion ,  i n  con t r a s t  t o  recent  suggestions t h a t  it does 
(17). 
amounts of l i gn in ,  whereas ce l lu lose  i s  not present t o  any g rea t  ex ten t .  A 
gradual change i n  the  l i g n i n  can be discerned. This change pr imar i ly  involves 
a l t e r a t i o n  of l i g n i n  s t r u c t u r a l  u n i t s  such t h a t  t he  average number of methoxyl 
groups per aromatic r ing  decreases by ha l f ,  and peaks f o r  l i g n i n  pyro lys i s  
product6 diminish r e l a t i v e  t o  t o t a l  pyro lys i s  products. Examination of x y l e m  
t i s s u e  coa l i f i ed  t o  a higher rank of l i g n i t e  revea ls  t h a t  t he  most l i k e l y  
mechanism for  removing methoxyl groups is  by demethylation. The l i g n i n  is 
eventually transformed t o  catechol-l ike s t ruc tures .  Such a transformation 
would be  cons is ten t  with pyro lys i s  s tud ie s  showing a decrease i n  methoxylated 
l i g n i n  phenols and an increase  i n  phenols, c r e so l s ,  and catechol.  It i s  a l s o  
cons is ten t  with the  NMR data  showing a decrease i n  methoxyl carbon and a 
constant value f o r  t he  f r ac t ion  of aryl-0 carbons r e l a t i v e  t o  t o t a l  aromatic 
carbons. 

s t r u c t u r a l  un i t s  a r e  modified t o  ca techol - l ike  s t ruc tu res ,  the  samples show 
gradually decreasing proportions of pyro lys i s  products t h a t  a r e  d i r e c t l y  of 
l i g n i n  o r ig in  (e.g. methoxyphenols) and increas ing  proportions of phenol and 
catechol-based products which most l i k e l y  or ig ina ted  from l ign in .  
assumes tha t  t h i s  t rend  i s  r e l a t ed  t o  increas ing  degrees of coa l i f i ca t ion ,  then 
the  loss of methoxyphenols could be used i n  a quan t i t a t ive  sense t o  denote 
increas ing  rank. 
Cretaceous age still  have a s u i t e  of l ignin-derived pyro lys i s  products t h a t  
suggest t h a t  l i g n i n  is not ex tens ive ly  a l t e r ed .  
geochemical s t a b i l i t y  f o r  l ign in .  

s t ruc tu res  in  l i g n i t e  samples a re  l inked  by a r y l  e t h e r  bonds as in  l i g n i n  which 
shows such a l inkage (8-0-4) between t h e  C-4 phenol and the  p-carbon on t h e  
propyl s i d e  chain. 
s t ruc tu res  are. i n  f a c t ,  l inked i n  such a manner. S igni f icant  i n t e n s i t y  i n  the  
range of 60-100 ppm is a t t r i b u t a b l e  t o  a l i p h a t i c  C-0 carbons as would be 
expected from above l inkages.  

disappear en t i r e ly  and the  catechol-l ike s t ruc tu res  typ ica l  of l ignite undergo 
fu r the r  modification. The da ta  appear t o  show tha t  catechol-l ike s t r u c t u r e s  
are los ing  one hydroxyl group per aromatic ring. 
t i s s u e  having a rank of subbituminous coal a r e  p r inc ipa l ly  phenol, t h e  c reso ls ,  
dimethylphenols. Cg-phenols. and Cq-phenols. The presence of subs t an t i a l  
2.4-dimethylphenol i s  ind ica t ive  of t h e  f a c t  t h a t  the carbon l inkage  at 0 4  
assoc ia ted  with the  three-carbon side-chain of l i g n i n  i s  re ta ined .  The l ack  of 
13c NHR s igna l s  i n  the  range of 60-100 ppm suggests t h a t  t he  three-carbon s ide  
chain of l i g n i n  has been modified. probably by cleavage of t h e  8-0-4 l inkage. 

Xylem t i s s u e  coa l i f i ed  t o  a rank of brawn coa l  conta ins  r e l a t i v e l y  l a rge  

As l i g n i n  in  buried wood i s  gradual ly  transformed t o  l i g n i t e  and the  l i g n i n  

I f  one 

It is pa r t i cu la r ly  noteworthy t h a t  some l i g n i t e  samples of 

This implies a genera l ly  high 

It is  d i f f i c u l t  t o  determine from the  pyro lys i s  da ta  i f  the  ca techol - l ike  

However. the  NMR data  would imply t h a t  t he  ca techol - l ike  

As t he  xylem t i s s u e  i s  coa l i f i ed  fu r the r ,  l i g n i n  pyro lys i s  products 

F’yrolysis products of xylem 
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Figure 1.  Py/gc-ms traces of buried wood described by Hatcher et al. (3 )  
and a sample of a Podocaq$=a log  (xy l i t e )  d e s c r i b e d i r t - h e  t e x t .  
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Buried wood 

Dismal Swamp 9 140 

Figure 2. Sol id-s tate  I3C MCR spectra of buried wood and Podocarpacea log. 
Spectra are reproduced from previous publications (4.8). 

P a t a p s c o  l ignite 

146 

I 

200 100 0 ppm 

Figure 3. Sol id-s tate  NlIR spectra of samples described i n  previous 
reports (3.8) and i n  the text. 
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Figure 4 .  Pyfgc-ms t r aces  f o r  the  l i g n i t e  f r o m  the  Patapsco Formation and 
fo r  the  Tr i a s s i c  log  of subbituminous rank. 
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