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Abstract 

ESCA was used t o  cha rac te r i ze  glassy carbon surfaces fo l l ow ing  
exposure t o  O 2  and COP. 
was used to moni tor  subsequent decomposition chemistry. The a b i l i t y  o f  O2 and 
C02 t o  undergo d i s s o c i a t i v e  chemisorption depends on t h e  extent  o f  p r i o r  
ox idat ion.  On i n i t i a l l y  clean surfaces, C02 and O2 ox ida t i on  produced s i m i l a r  
species character ized by a 531.0 (eV) O(1s) peak and a 285.8 (eV) C(1s)-peak 
i n  the  d i f f e rence  spectrum. The species decomposed above 7OOOC t o  produce 
gaseous CO. 
oxygen surface coverage. 0 generated add i t i ona l  oxygen w i th  a 531.5 (eV) 
O(1s) and a 285.8 (eV) C( ls f  peak i n  t h e  d i f f e r e n c e  spectrum. This oxygen 
species i s  associated w i th  t h e  product ion o f  CO near 600°C. 
i n  i t s  a b i l i t y  t o  d i s s o c i a t e  on p a r t i a l l y  ox id ized surfaces. ?he 285.8 (eV) 
C(1s) peak could not  be i n t e r p r e t e d  i n  a s t ra igh t fo rward  way i n  terms o f  a 
carbonyl f u n c t i o n a l i t y .  
reference and favors the  format ion o f  ca rboxy l i c  ac id  groups character ized by 
a 288.4 (eV) C(1s) peak and O(1s) peaks a t  531.2 and 532.7 (ev). 

-- 

Temperature-programed Reaction Spectroscopy (TPRS) 

Addi t ional  exposure t o  C02 up t o  7OOOC d i d  not increase t h e  

0 i s  d i s t i ngu ished  

HNO3 ox ida t i on  o f  glassy carbon was s tud ied as a 

I n t r o d u c t i o n  

ESCA has been used t o  cha rac te r i ze  t h e  surfaces o f  a wide v a r i e t y  o f  
d i f f e r e n t  carbons which i nc lude  glassy carbon(1-3), graphite(4.5) and carbon 
f ibers . (6-11)  In fo rma t ion  has been gathered about the  degree o f  sur face oxida- 
t i o n  and t ype  o f  oxygen complexes formed a f t e r  var ious o x i d a t i v e  
t reatments. ( l -3 ,  5-11) The degree o f  ox ida t i on  can be monitored by t h e  O(1s)  
i n t e n s i t y .  I n  general a d i s t i n c t i o n  about the k ind of  sur face oxide i s  made 
based on t he  C(1s) emission which occurs a t  higher b ind ing energies from the 
main (1s) l i n e .  
ma te r ia l s ( l 2 -16 )  have demonstrated t h a t  t h e  magnitude o f  the C(1s) peak s h i f t  
t o  higher b ind ing  energy i s  r e l a t e d  t o  t h e  number o f  carbon oxygen bonds and 
i n  the  range o f  1.5 eV f 0.4 per bond. The r e s u l t  i s  s i g n i f i c a n t  because 
common f u n c t i o n a l i t i e s  can be grouped according t o  t h e i r  C(1s) s h i f t .  
guidance from these simple a d d i t i v i t y  r u l e s  have been employed i n  the i n t e r -  
p r e t a t i o n  of r e s u l t s  from carbon surf_aces. 
assoc iated w i th  a l coho ls  and ethers, 
eV sh i f t s  w i t h  ac ids and esters . ( l -3 ,  6-16) 

Extensive ESCA s tud ies  o f  organic molecules and polymeric 

The 

For example ‘1.5 eV s h i f t s  are 
3.0 eV s h i f t s  w i t h  carbonyl groups, -4.5 \ 
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, 

The O(1s) peak a l so  conta ins funct ional  group in format ion.  I n  
esters  s i n g l y  and doubly bonded oxygen i s  separated by -1.3 eV with t h e  s i n g l y  
bonded oxygen a t  h igher  b ind ing  energies.(l3-16) 
bonyl oxygen a t  531.6 eV and ether  oxygen a t  533.1 eV was recen t l y  made on 
carbon f i b e r  surfaces.(lO) 

ox ida t i on  o f  g lassy carbon surfaces.( l7)  
r e a c t i v i t y .  This was associated w i t h  a more f a c i l e  gaseous d i s s o c i a t i o n  step 
a t  h igh oxygen coverages which generated lower energy CO format ion s i t es .  The 
ava i l ab le  ESCA r e s u l t s  suggested t h a t  C02 and 02 produced s i m i l i a r  oxygen 
f u n c t i o n a l i t i e s  a t  3OOOC having a 532 eV b ind ing energy w i t h  t h e  absence o f  
carboxyl i c -1  i ke C(1s) features.  
carbonyl- type f u n c t i o n a l i t y ,  however, a d e f i n i t i v e  i d e n t i f i c a t i o n  based on t h e  
C(1s) peak was n o t  made. 
reso lu t i on  C(1s) and O(1s) spectra produced under p rev ious l y  de f i ned  chemical 
condi t ions.  The spectra should l ead  t o  func t i ona l  group i d e n t i f i c a t i o n .  This 
in format ion coupled w i th  TPRS r e s u l t s  and previous k i n e t i c  da ta ( l8 )  w i l l  
p rov ide a good bas is  f o r  f u r t h e r  fundamental mechanist ic work and 
i n t e r p r e t a t i o n  o f  carbon ox ida t i on  and g a s i f i c a t i o n  processes. 

A d i s t i n c t i o n  between car-  

We have prev ious ly  used AES i n  a comparative study o f  t h e  02 and C02 
As expected 02 has a much h igher  

These r e s u l t s  a re  consis tant  w i t h  a 

The ob jec t  o f  t h e  present work i s  t o  ob ta in  h igh  

Experimental 

The glassy carbon s t a r t i n g  ma te r ia l  was obtained as p la tes  from 
Samples were made i n  the  form o f  powders and ch ips.  Atomergic Chemetals. 

Both powders and ch ips were used i n  TPRS experiments wh i l e  ch ips were used 
exc lus i ve l y  i n  ESCA experiments. 
and s iev ing  g lassy carbon plates.  
surface area based on K r  chemisorpt ion measurements. 
gassed t o  900°C p r i o r  t o  ox idat ion.  0 and CO ox ida t i on  were done i n  a 
Dupont model 951 thermogravimetric ana?yzer. &I mg o f  ma te r ia l  was normal 
sample size. The glassy carbon ch ips were c u t  from p la tes  w i t h  a diamond saw 
t o  1 cm x 1 cm x 1 m dimensions. 
Buehler Carbimet s i l i c o n  carb ide paper up t o  600 g r i t  number. The samples 
were f u r t h e r  po l ished w i t h  Buehler Alumina 

The ch ips  were washed w i t h  deionized water and then outgassed t o  
-1300°C i n  UHV p r i o r  t o  use. The s p e c i f i c  sur face area o f  t h e  ch ips were 
0.3 m2/gram based on Kr chemisorpt ion measurements. Oxidat ive t reatments 
could be given t o  samples i n  t h e  TGA apparatus as wi th powdered samples. 
ch ips were espec ia l l y  su i ted  f o r  use i n  a atmospheric pressure/UHV sample 
i n t roduc t i on  system. 
1 atm gas and returned i n t o  a UHV apparatus f o r  sur face ana lys i s  wi thout  
exposure t o  a i r .  
received o x i d a t i v e  t reatments i n  t h e  TGA apparatus and which were cooled t o  
room temperature i n  t h e  reactant  gas mixture,  could be t rans fe r red  i n  atmos- 
phere t o  respect ive holders f o r  TPRS experimentation. B r i e f  exposure t o  a i r  
a t  room temperature d i d  no t  a l t e r  r e a c t i v i t y  pat terns observed i n  subsequent 
TPRS experiments. 
samples i n  HN03 under r e f l u x  condi t ions.  

60-80 mesh powders were produce by g r ind ing  
Powders were found t o  have 5 m /g s p e c i f i c  9 

The powders were out-  

The ch ips were successively po l i shed  with 

paste down t o  0.05 micron size.  

The 

Samples could be given reac t i ve  t reatment up t o  7OOOC i n  

Glassy carbon ch ips as wel l  as powdered samples which 

N i t r i c  ac id  ox ida t i on  was accomplished by b o i l i n g  t h e  
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The TPRS apparatus used w i th  powdered samples was s p e c i a l l y  con- 
s t ructed as an appendage t o  a UHV spectroscopy chamber which housed an EA1 and 
an Extranuclear quadrupole mass spectrometer. The EA1 u n i t  had dual mass 
scanning c a p a b i l i t y  d u r i n g  a TPRS experiment whi le  the  Extranuclear 
Spectrometer, i n t e r f a c e d  t o  a PDP 11 data a c q u i s i t i o n  system, provided the 
c a p a b i l i t y  t o  f o l l o w  up t o  elevenllasses dur ing a TPRS experiment. 
u n i t  had a base pressure o f  5x10- 
l/s turbomolecular pump. 5-10 mg samples were accommodated i n  a ceramic 
vessel 9mm long x 3 mm diameter. 
i n t o  the  sample bed. 
elements and the sample temperature was c o n t r o l l e d  by a M i c r i s t a r  
c o n t r o l l e r .  The volume o f  t he  TPRS apparatus was approximately 100 cc. 

w i t h  a 150 degree Spherical Secto$oAnalyser. The base pressure i n  the analy- 
s i s  chamber was l e s s  than 1 x 10- t o r r .  Non-monochromatic Mg KO r a d i a t i o n  
was the e x c i t a t i o n  source. The x-ray source was operated a t  30Ow 
2 h a ,  15 kV). Glassy carbon and g raph i te  samples d i d  no t  experience charging 
problems du r ing  data acqu is i t i on .  The work func t i on  o f  f r e s h l y  cleaned Union 
Carbide XYA Monochromator Graphite was 4.2 eV and the carbon (1s) b ind ing 
energy with respect  t o  t h e  vacuum l e v e l  was 284.4 eV. 
Glassy carbon was a l s o  4.2 eV. The b ind ing  energy o f  t h e  C(1s) peak o f  clean 
Glassy carbon was 284.5 eV w i th  respect  t o  the vacuum leve l .  Oxidat ion o f  
Glassy by 02 a t  7OOOc increased the  work func t i on  o f  t h e  sample t o  4.4 eV. 
The increase was smal ler  f o r  m i l d e r  ox idat ions whi le  HNO3 ox ida t i on  increased 
t h e  value t o  4.5 eV. The s l i g h t  b ind ing energy co r rec t i ons  due t o  the 
increase i n  work f u n c t i o n  upon ox idat ion,  < 0.3 eV, were not made t o  t h e  
ox id ized spectra. A l l  N(E) spectra were o6tained a t  0.9 eV reso lu t i on .  The 
s igna l  from the  C(1s) peak o f  g raph i te  correspgnded t o  35,000 counts/sec. 
Typica l  counting t imes  y ie lded  spectra w i t h  10 maximum counts. Data 
a c q u i s i t i o n  was b y  means o f  VGS 2000 software package us ing m u l t i  scan 
averaging. 

The TPRS 
To r r  pumped separately by a Balzers 300 

A chromel-alumel thermocouple was inse r ted  
The sample holder was r e s i s t i v e l y  heated by tantalum 

ESCA Spectra were obtained from a Vacuum Generators ESCALAB equipped 

The work func t i on  o f  

Results 

Fol lowing HN03 ox ida t i on ,  g lassy carbon samples were temperature 
programed and t h e  gaseous evo lu t i on  recorded as a func t i on  o f  temperature. 
F igure 1 shows t h e  r e s u l t s  a t  two  d i f f e r e n t  heat ing rates.  The gaseous pro- 
duc t i on  pa t te rns  s h i f t  t o  higher temperatures w i t h  increased heat ing ra te .  
was not  poss ib le  t o  d e r i v e  d e t a i l e d  energet ics  o f  the decomposition processes 
from the v a r i a t i o n  o f  the peak maximum w i t h  heating r a t e ( l 9 ,  20) because of  
t h e  extremely broad fea tu res  from over lap ing peaks. Nevertheless the  evolu- 
t i o n  pat terns are s u f f i c i e n t l y  d i s t i n c t  so as t o  be i n te rp re ted  on a chemical 
bas is .  H 0 i s  a major  product below 200°C. C02 and CH4 dominate the p r o f i l e  
between 260 t o  400°C. 
dec l ines t o  background leve ls .  Above 500OC the re  i s  a f a l l  o f f  o f  C02 a n i  CH4 
as CO becomes the major product. 

ESCA was used t o  cha rac te r i ze  t h e  i n i t i a l  s t a t e  o f  HNO3 ox id i zed  
g lassy carbon surfaces and as a func t i on  o f  heating i n  UHV. 
schedule was approximately 1 degree per sec. t o  a maximum temperature then 
cooled i n  UHV for analys is .  

It 

CO product ion increases over t h i s  i n t e r v a l  whi le  H 0 

The heat ing 

The C(1s) ESCA r e s u l t s  are show i n  Figure 2 i n  
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the form o f  a d i f f e rence  spectrum. 
carbon sample outgassed a t  13OOOC i n  UHV was used as t h e  reference spectrum 
f o r  subt ract ion from each ox id i zed  spectrum. 
i n  each spectrum so as t o  h i g h l i g h t  t h e  r e l a t i v e  changes. 
magnitude o f  the changes r e l a t i v e  t o  the reference spectrum decreases with 
decreasing degrees o f  ox idat ion.  
the oxygen as the 100°C case and the 6OO0C d i f f e r e n c e  spectrum i s  on a four  
times more sens i t i ve  scale r e l a t i v e  t o  the 100°C case. The magnitude o f  t h e  
change i s  c l e a r l y  ev ident  from the  actual  spectra, not  shown. 
negative going peak i n  each spectrum i s  a r e s u l t  o f  decreased emission from 
the parent C(1s) signal upon ox idat ion.  The p o s i t i v e  going features a r e  a 
r e s u l t  o f  ox ida t i on  and represent modi f ied carbon forms. The 100°C spectrum 
has one prominent peak a t  288.5 eV. The peak occurs 4.1 eV s h i f t e d  from the  
parent carbon (Is) l i n e .  I n  a d d i t i v i t y  terms the peak can be r e l a t e d  t o  
carbon atoms t r i p l y  coordinated t o  oxygen, as i n  the case o f  an ac id  funct ion-  
a l i t y .  The t o t a l  amount o f  hydrogen produced as H20 and CH4 i n  TPRS exper i -  
ments r e l a t i v e  t o  the t o t a l  oxygen produced as CO, CO?, and H 0 i s  cons i s ten t  
w i th  t h e  288.5 eV peak i n  the  100°C spectrum being p r i m a r i l y  %ue t o  a c i d  
f u n c t i o n a l i t i e s .  There i s  another major peak a t  285.2 eV which i s  s h i f t e d  by 
0.7 eV. The magnitude o f  the s h i f t  i s  cons is tant  w i th  i t  being a B peak, 
i.e., a s h i f t  o f  t he  carbon atom adjacent t o  the ac id  carbon.(22) 

There i s  a lso a broad decrease i n  emission, represent ing a 50% 
absolute decrease centered a t  290.5 (ev). We have observed a broad peak 
centered a t  t h i s  energy w i th  clean glassy carbon samples. As i n  o ther  aro- 
matic systems t h e  peak i s  due t o  n t o  TI* t r ans i t i ons . (23 )  UPS s tud ies o f  
glassy carbon(21) show subs tan t i a l  valance band emission w i t h i n  2 (eV) o f  the 
Fermi l e v e l .  This emission i s  der ived from the  n bonding s t r u c t u r e  and i s  
associated w i th  unsaturated carbon valencies. 
decreases. 
the UPS valence band spectrum resembles t h a t  f r a n  i n s u l a t i n g  s t ruc tu re .  
no t  su rp r i s ing  t h a t  n t o  n *  emission i n t e n s i t y  w u l d  decrease upon o x i d a t i o n  
although we do not know what changes occur i n  the  unoccupied s tates.  

285.2 eV peak and the 288.5 eV peak simultaneously decl ine. There i s  an 
absolute 80% dec l i ne  evident i n  the 288.5 eV peak from the N(E)  spectra. The 
coupled dec l ine f u r t h e r  supports t h e  content ion t h a t  t he  285.2 eV represents a 
8 peak. 
subsequent gaseous evo lu t i on  i s  main ly  t o  CO. 
propor t ionate dec l i ne  i n  the t o  TI* i n t e n s i t y .  

The i n i t i a l  oxygen (Is) spectrum i s  broad (FWHM 3.5 eV) and can be 
resolved i n t o  t w o  peaks o f  equal i n t e n s i t y  a t  531.2 and 532.7 eV. Two peaks 
are an t i c ipa ted  f o r  an ac id  s t r u c t u r e  w i t h  t h e  doubly bonded oxygen a t  lower 
b ind ing  energy. As the sample i s  heated i n  stages the O(1s) incremental 
d i f f e rence  spectra between 100 t o  3OOOC show a s l i g h t  nonuniform dec l i ne  i n  
i n t e n s i t y  toward the low b ind ing energy s ide and H20 i s  an important 
product. H20 formation may r e s u l t  f r a n  ac id  decomposition and format ion o f  
lactone s t ructures.  
i n t e n s i t y  and C02 and CH4 are major products. The O(1s)  behavior i nd i ca tes  
t h a t  t he  i n i t i a l  O(1s) spectrum may be composed o f  several d i f f e r e n t  a c i d  
funct ional  i t i e s  w i t h  i nd i v idua l  two-peaked st ructures.  Above 600°C t h e  O(1s) 
s ignal  can be resolved i n t o  two peaks a t  531.0 eV and 533.2 eV. The 531.0 eV 

The spectrum o f  a " c l e a n " ( 2 l j  glassy 

The y a x i s  scales a re  d i f f e r e n t  

The 600°C sample conta ins approximately 1 /4 

The absolute 

The l a r g e  

Upon ox ida t i on  t h i s  emission 
I n  the  case o f  HNO3 o x i d a t i o n  the emission w i th in  4 eV i s  l o s t  and 

It i s  

Between 100-525OC, dur ing the  stage o f  major C02 evolut ion,  t he  

A t  6OOOC a peak near 286.0 eV becomes the  major component and the 
Note a l so  t h e  r e t e n t i o n  o f  .a 

Between 300" t o  525OC the re  i s  a uniform dec l i ne  i n  O(1s) 
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peak dec l ines a t  h igher  temperatures and the re  i s  CO evolut ion.  
peak corresponds t o  s tab le  r i n g  ether. 

t e r i z e d  w i t h  ESCA and TPRS. 
i n t e n s i t y  scale. 
t i o n s  and cooled i n  t h e  reactant  gas. 
300°C. The 700°C ox ida t i ons  i n  0 and CO corresponded t o  20% and <0.1% 
burn-of f  r e s p e c t i v e l y .  The amount o f  sur face ox ida t i on  t h a t  could be achieved 
with 02 increased w i t h  temperature. 
w i t h  a shoulder a t  higher b ind ing energies. 
300°C and 700°C as higher b ind ing peak components begin t o  con t r i bu te .  
cont rast  t he re  i s  a l i m i t e d  amount o f  ox ida t i on  w i t h  CO and s i m i l i a r  l e v e l s  
a re  achieved a t  300°C and 700°C. This i s  cons i s tan t  w i f h  previous AES 
s tud ies . ( l 7 )  Two main canponents occur a t  531.0 eV and 533.0 eV. The 531.0 
eV peak decreases w i t h  concommitant CO e v o l u t i o n  upon heat ing above 
7OOaC.(17) The 533.0 eV peak represents very s t rong ly  bound oxygen with small 
res idua ls  s tab le  a t  1300°C (see Figure 6) .  The 533.0 eV peak i s  associated 
with r i n g  ethers. 

The 533.2 eV 

Clean g lassy  Carbon samples were ox id ized i n  02 and CO and charac- 

Each sample was oxid ized f o r  300 sec under s p e c i f i e d  condi- 
Figure 3 show t h e  O(1s) s ignal  on t i e  same 

N e g l i g i b l e  bu rn -o f f  occurred below 

A 531.0 eV peak i s  generated a t  1 5 0 " ~  

I n  
The O(1s) i n t e n s i t y  increases a t  

It i s  tempt ing t o  i n t e r p r e t  the 531.0 eV O(1s) peak produced by CO 
and 0 wi th  doubly coordinated oxygen as i n  a carbonyl f u n c t i o n a l i t y .  
we ha8 p rev ious l y  taken an unresolved 532 eV peak as evidence f o r  a carbonyl 
f u n c t i o n a l i t y .  Current carbon (1s) d i f f e r e n c e  spect ra i n  Figure 4 seem t o  
b e l i e  the presence o f  a simple carbonyl f u n c t i o n a l i t y .  
arguments we would expect a carbonyl oxygen t o  s h i f t  carbon by approximately 
3.0 eV. There i s  l i t t l e  i n t e n s i t y  i n  t h i s  region. 
d i f f e rence  features l ook  very s i m i l i a r  f o r  02 and C02. 
going peak represents  l o s t  parent C(1s) i n t e n s i t y  upon ox idat ion.  The main 
p o s i t i v e  peak occurs a t  285.8, s h i f t e d  '1.3 eV from the  main l i n e .  
represent carbon s i n g l y  coordinated t o  oxygen based on a d d i t i v i t y  reasoning. 
I n  t h e  case o f  700°C CO and 30OoC f12 ox ida t i on  the re  i s  a decrease i n  emis- 
s i o n  centered near 290.5 eV r e f l e c t i v e  o f  l o s t  TI t o  TI* i n t e n s i t y .  
of 700°C O2 o x i d a t i o n  a small p o s i t i v e  peak occurs a t  288.7 eV along w i t h  
added emission near 291 eV. The 288.7 eV can be r a t i o n a l i z e d  by the  presence 
o f  carbon t r i p l y  coord inated t o  oxygen, Ac id ic  p roper t i es  have been repor ted 
fo l lowing 0 o x i d a t i o n  of carbon which have been supported w i t h  spectroscopic 
evidence.(26) It should be recognized the  enormous amount of ma te r ia l  on t h e  
atomic scale which must be removed t o  achieve 20% burn-of f .  The exact nature 
of t h e  res idua l  carbon may be d i f f e r e n t .  We have observed UPS features from 
glassy carbon which tended more toward g raph i te  a f t e r  1300°C c leaning 
fo l lowing severe ox ida t i on ;  s p e c i f i c a l l y  t h e  appearance o f  a r 3 u  f i n a l  s t a t e  
peak of graphite.(25) The f i n e  l u s t e r  o f  a po l ished sur face was gone; t h e  
surface was d u l l  and p i t t e d .  
carbonaceous components i n  glassy carbon could change the  TI t o  n f  i n t e n s i t y  
c o n t r i b u t i o n s  and account f o r  t he  broad 291 eV peak. 
the presence of  carbonate s t ructures,  however, t h i s  i n t e r p r e t a t i o n  i s  l e s s  
l i k e l y  as t h e  added emission a t  291 eV p e r s i s t s  upon heat ing t o  h igh  tempera- 
t u r e  where carbonates should decompose. 

As observed i n  previous systems(26), 0 o x i d a t i o n  and quench proce- 
dures r e s u l t s  i n  both CO and COP evo lu t i on  i n  sugsequent TPRS experiments. 
F igure 5 shows the  r e s u l t s  w i t h  glassy carbon as well  as f o r  C02 ox idat ion.  
Co2 ox ida t i on  produces sur face species which on ly  y i e l d  CO. O2 generates 

Indeei  

From simple a d d i t i v i t y  

The l a r g e  negat ive 
The main carbon (Is) 

This would 

I n  the  case 

The se lec t i ve  ox ida t i on  o f  l e s s  r e f r a c t o r y  

The other  p o s s i b i l i t y  i s  
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sur face species which produce CO a t  much lower temperatures. This  behavior 
has been de ta i l ed  i n  previous work.(l7) The small 288.7 eV C(1s) peak 
decreases along w i t h  t h e  285.8 eV peak concommitant w i t h  CO and CO e v o l u t i o n  
between 400-600°C. Above 6OOOC CO i s  produced and t h e  285.g eV peak 
decreases. A d i s t i n c t i o n  between the  species generated a t  h igh oxygen cover- 
ages wi th 02,  which produces CO near 6OO0C, and t h e  species generated a t  l ow  
oxygen coverages w i t h  e the r  O2 o r  C02, which produces CO above 700°C cannot be 
made based on C(1s) spectra. 

The O(1s) spectra,  shown i n  Figure 6,  produced a c l e a r  i n d i c a t i o n  o f  
a d i s t i n c t  e l e c t r o n i c  con f igu ra t i on  a t  h igh  oxygen coverages. A g lassy carbon 
sample was heated fo r  300 sec i n  1 atm 0 a t  700°C. cooled i n  the  reac tan t  gas 
and then incrementa l ly  heated i n  UHV. T ie  i n i t i a l  oxygen spectrum a t  100°C 
was prev ious ly  described. The O(1s) s igna l  decreases a t  each temperature 
i n te rva l .  
h igh  oxygen coverages. 
450-600°C. 
s igna l  over t h i s  i n t e r v a l  character ized by a t  531.5 eV peak (FWHM o f  1.7 
eV). 
i n t o  531.0 eV and 533.0 eV components. 
temperature O2 and C02 ox ida t i on  and y i e l d s  CO between 700 and 900°C. The 
533.0 eV peak represents oxygen more s t rong ly  bound. probably r i n g  ether .  A 
small peak remains a f t e r  1300°C heating. S i m i l  i a r  s t ructures remain above 
900°C on potassium catalyzed g lassy carbon sur face fo l l ow ing  potassium loss.  
The r e l a t i v e  amount o f  t h i s  type o f  oxygen depends on the  p r i o r  sample t r e a t -  
ment.(27) It i s  a minor component fo l l ow ing  159°C O2 ox ida t i on  as these 
condi t ions are no t  harsh enough t o  generate subs tan t i a l  oxygen encorporat ion 
i n t o  the  r i n g  s t ruc tu re .  The r e l a t i v e  amount o f  oxygen s tab le  above 900°C 
tends t o  increases with increas ing s e v e r i t y  o f  p r i o r  oxidat ion.  It i s  a 
s i g n i f i c a n t  component fo l l ow ing  O2 ox ida t i on  a t  700°C and HNO ox ida t i on  o f  
g lassy carbon. The a b i l i t y  o f  O2 and CO t o  d i s s o c i a t i v e l y  adsorb on g lassy 
carbon depends on t h e  amount o f  oxygen a?ready present. 
k ind o f  very s tab le  oxygen w i l l  a l so  modi fy  t h e  a b i l i t y  o f  02 and C02 t o  
d i ssoc ia te  on proximate carbon s i t e s .  

Previous AES r e s u l t s ( l 7 )  mapped the  oxygen s t a b i l i t y  p r o f i l e  a t  
We expect a step decrease i n  s igna l  between 

The O(1s) d i f f e rence  spectra shows a se lec t i ve  decrease i n  O(1s) 

A t  600°C t h e  O(1s)  s igna l  i s  a two-peaked s t ruc tu re  and can be resolved 
A 531.0 eV peak can be produced by low 

It i s  l i k e l y  t h a t  t h i s  

Di  scussion 

i s  dependent on t h e  degree o f  sur face ox idat ion.  S im i la r  k inds o f  species a re  
produced by C02 and 02 up t o  moderate oxygen coverages. 
by i t s  a b i l i t y  t o  d i ssoc ia te  on p a r t i a l l y  ox id ized surfaces. It i s  apparent ly  
t h i s  proper ty  which enables 02 chemisorpt ion t o  be a use fu l  sur face area probe 
i n  g a s i f i c a t i o n  systems.(29) 
products i s  a more complicated question. 
t h e  simple a d d i t i v i t y  r e l a t i o n s h i p  have been used i n  t h e  i n t e r p r e t a t i o n  o f  
ox id ized carbon surfaces (1-3, 6-16). I n  the  study o f  carbon f i b e r  surfaces 
Takahagi and I s h i t a n i  (7) use a 2.4 eV sh i f t ed  peak f o r  carbonyl groups. 
Proctor  and Sherwood ( 8 )  use a 3.0 eV s h i f t e d  peak; nevertheless,  t h e  same 
authors present evidence t h a t  carbonyl f unc t i ona l  groups on extended aromatic 
r i n g  systems may have smal ler  s h i f t s  than those found f o r  s i m i l a r  
f u n c t i o n a l i t i e s  i n  polymers. They suggest t h a t  t h e  C(1s)  s h i f t s  i n  extended 
aromat ic carbonaceous systems a r e  mod i f i ed  due t o  the  presence o f  
TI- in teract ions.  Kozlowski and Sherwood (9) have e lect rochemical ly  ox id ized 

The a b i l i t y  o f  02 and C02 t o  d i s s o c i a t i v e l y  adsorb on g lassy carbon 

02 i s  d i s t i ngu ished  

The nature o f  t h e  C02 and O2 d i s s o c i a t i o n  
C(1s) decovolut ion schemes based on 
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carbon f i b e r  surfaces i n  n i t r i c  ac id  and show a d i s t i n c t  C(1s) peak s h i f t e d  
2.1 eV and assigned t o  carbonyl type oxides. This  i s  i n  add i t i on  t o  es te r - t ype  
groups sh i f t ed  '4.0 eV. 
s h i f t e d  peak i s  a r e s u l t  o f  a keto-enol t ype  s t ruc tu re .  I n  general,  i t  i s  
be l ieved t h a t  t h e  C(1s) pos i t i on ,  f o r  a ca rbony l - l i ke  group on a carbon 
surface, does not  depart s i g n i f i c a n t l y  fran t h e  simple a d d i t i v i t y  r e l a t i o n s h i p  
o f  -3.0 eV. 
ca rbony l - l i ke  species, o n l y  i n  one study has a spectrum been presented which 
shows t h i s  as t h e  dominant surface species. ( l )  
was oxidized i n  an O2 RF plasma. CO and H 0 RF plasmas were i n e f f e c t i v e  i n  
t h e  production o f  carbonyl-type func t i ona l  i f i e s . ( l )  
d e f l e c t i o n  spectroscopy has been used t o  study the  O2 ox ida t i on  o f  h igh  
temperature chars (28)  
centered near 1300 cm-*. 
l i k e  species was absent. 

The presence o f  carboxyl i c  ac id  func t i ona l  i t i e s  fo l lowing HNO3 
ox ida t i on  i s  supported by TPRS and ESCA r e s u l t s .  The C(1s) peak a t  288.5 eV 
could be i n t e r p r e t e d  i n  terms o f  simple a d d i t i v i t y  behavior. Extensive TPRS 
and thermal s t a b i l i t y  (17) s tud ies o f  0 and CO oxd ia t i on  have defined 
cond i t i ons  where species are produced d i c h  y ie?d  CO upon decomposition. The 
C(1s) peak a t  285.8 eV i n  d i f f e r e n c e  curves decreases concomi tan t  w i th  CO 
evolut ion.  
bas is  o f  the widely accepted a d d i t i v i t y  behavior o f  t h e  C(1s) " s h i f t "  w i th  
carbon bond coord inat ion.  E i t h e r  the chemical s h i f t  f o r  t h i s  p a r t i c u l a r  
system i s  s i g n i f i c a n t l y  d i f f e r e n t  than i n  polymeric systems o r  a d i f f e r e n t  
species i s  invo lved i n  carbon ox idat ion.  Wi th in  the framework o f  t he  
a d d i t i v i t y  r u l e s  the  285.8 eV peak, s h i f t e d  by -1.3 eV, i s  cons is tent  w i th  
carbon s i n g l y  bonded t o  oxygen. We would expect t h i s  peak f o r  r i n g  ethers, 
however, i t  i s  not l i k e l y  t h a t  t h i s  species i s  responsib le  f o r  low temperature 
CO formation. The peak i s  a l s o  cons is tan t  with phenol ic  groups bu t  subsequent 
02 and C02 ox ida t i on  chemistry which y i e l d s  v i r t u a l l y  no hydrogen con ta in ing  
products would necess i ta te t h a t  hydrogen would remain on the sur face and thus 
p a r t i c i p a t e  i n  a quasi c a t a l y t i c  manner. 

depart f ran a simple two dimensional p i c tu re .  LEE0 r e s u l t s  from t h e  clean 
edge surface of g raph i te  were not  rep resen ta t i ve  o f  bu l k  l a t t i c e  terminat ions 
and suggested subs tan t i a l  sur face recons t ruc t i on  (30). The wel l  ordered C 
(2  x 2/3) LEED p a t t e r n  from t h e  edge g raph i te  sur face was l o s t  and on ly  a 
d i f f use  background s c a t t e r i n g  was observed upon sur face ox ida t i on  w i t h  
02(31). The p a t t e r n  was regenerated by heat ing above 800°C i n  vacuum. 
S im i la r  kinds of pe r tu rba t i ons  away from t w o  dimensional organic chemistry 
analogues may a l so  occur w i th  glassy carbon. The carbon (1s) peak s h i f t e d  by 
"1.3 (eV) may be a consequence o f  a sur face e t h e r - l i k e  species. 
r e n t l y  no t  poss ib le  t o  d i s t i n g u i s h  whether a breakdown i n  a d d i t i v i t y  behavior 
o r  novel bonding con f igu ra t i ons  i s  responsib le  f o r  t h e  C(1s) spectrum o f  these 
systems. Future work us ing HREELS i s  under way t o  he lp  c l a r i f y  t h i s  dilemma 
by prov id ing sur face v i b r a t i o n a l  in format ion.  

In l a t e r  work (10) these authors suggest t he  2.1 eV 

While a -3.0 eV s h i f t e d  peak has been used t o  represent a 

I n  t h i s  study glassy carbon 

I R  photothermal beam 

Evidence o f  e t h e r - l i k e  species appeared as a band 
The presence o f  a band corresponding t o  carbonyl- 

We cannot i n t e r p r e t  t h i s  peak as a carbonyl f u n c t i o n a l i t y  on the 

The carbon-carbon bonding s i t u a t i o n  on the  glassy carbon surface may 

It i s  cur- 
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