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INTRODUCTION

In this study, we show that the mass spectrometric composition of coal tars can
be predicted from the pyrolysis mass spectra of their parent coals. Curie-point
low voltage electron ionization mass spectrometry (CuPy-EIMS) was performed on
nineteen coals and on their respective pyrolysis 1iquids prepared by means of a
fixed bed reactor method described elsewhere (1). Using factor and discriminant
analysis techniques, the spectra can be classified and underlying structural
variables responsible for the above classification identified. Furthermore,
compositional similarities and dissimilarities between the solid samples and their
Tiquids can be brought out using canonical correlation methods (2). Table I lists
the samples, their PSOC numbers, geological origin and the rank information. Of
the nineteen coal samples, two are of subbituminous rank, three of high volatile B
and C bituminous rank and the remainder of high volatile A bituminous rank. Twelve
coals are from the Eastern/Appalachian ccal grovince, six are from the Interior
province and one is a Western coal from the Northern Great Plains province.

EXPERIMENTAL

Details of sample preparation and CuPy-EIMS analysis procedures have been
described elsewhere (3). Experimental conditions were as follows: Curie-point
temperature 6100C; heating rate approx. 100 K/s; total heating time 10s; electron
energy 12eV; mass range scanned 20-260 amu; scanning rate 1000 amu s~1; total
scan time approximately 10s. Each sample was analyzed in triplicate and the
spectra recorded and stored by computer (IBM 9000).

Data Processing

Mass variables with m/z values higher than 90 were selected for multivariate
analysis. The reason for this is that the low mass range variables are not
suitable for correlating the coals with their tars because of the loss of low
molecular weight volatile products in the fixed bed reactor. The remaining data
sets consisting of 171 variables were preprocessed, normalized and factor and
discriminant analysis performed (4,5). Four discriminant functions were found to
be significant, accounting for 55% of the variance in the coal data and 53%
variance in the tar data, respectively.

Using four discriminant functions from both the coal and the tar data sets,
canonical correlation analysis was done. Two canonical variates were obtained with
correlation coefficients >0.9. The two canonical variates for the coal data set
accounted for 35% of the total variance; whereas 30% of the total variance was
accounted for by the two canonical variates for the tar data set.

Using a "jackknifing" procedure the topology of the canonical variate space was

checked. The scores of the "unknown" sample were projected in the canonical
variate space and the pyrolysis mass spectra of these unknown samples were then
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predicted by calculating a distance weighted average from the spectra of the two
nearest neighbors.

Methods and Procedures

A brief description of the methodology and mathematical rationalization is
given below. Factor analysis (6) is an efficient way of reducing a data set (the
data is generally preprocessed to form a correlation matrix). The first factor
describes the maximum correlated variance in the data set, the second (orthogonal
to the first) the maximum of the residual correlated variance, etc.:

Fj = ajjz; + agjza + ... + apjZn 1)

where F is factor with loading aij, which describe the contribution of the
var1ab1e zj to the %actor

The scores, i.e., the contributions of the spectra to the factors, are obtained
by substituting the intensities of the mass variables in the spectra for zj. The
relationship between the data matrix D (size s x m where s is the number of spectra
and m is the number of mass variables) and the calculated factor matrix is:

D=SxF 2)

where S is the score matrix (size s x n, n = number of factors) and F (size n x m)
contains the factors. The scores in the principal component analysis are
calculated in the following way:

$ =D x (Ex N\N1/2) 3)
where S contains the standardized scores (mean is zero, standard deviation is 1),
and D the standardized data matrix. E is the orthonormal eigenvector for matrix Z
= 1/s D'D, with the eigenvalues given in /\.

The standardized data matrix, D, can be reconstructed from the scores using
this relation:

D=5 x (Ex/\" 1/2% 1
=Sx(E x /\1/2)
as x (ET x/\1/2)
= standardized scores * factor loadings 4)

The score of an unknown sample, defined in terms of a standardized data matrix, can
be projected using Equation 3. Similarly, the projected unknown score, based on a
training data set, can be used to predict a standardized data matrix (in this case
of the unknown sample) using Equation 4. The factor loadings, before being used in
Equation 4, have to be transformed to the canonical variate space by using the
canonical variate matrix.

RESULTS AND DISCUSSION

The results will be discussed under two separate subheadings; canonical
correlation results and prediction results.

Canonical Correlation Results

Canonical variate scores (CVI vs. CVII) for the two data sets are plotted in
Figure 1. The result shows that the data is primarily two-dimensional. The
clustering of the samples suggests that the Interior hvb coals (samples #15, 16 and
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17, Table I) are more alike in composition than the Eastern hvb coals. The subbit
C Upper Block Indiana coal (sample #7) is different from the subbit A coal of the
Northern Great Plains (sample #18). The Lower Kittaning coal from West Virginia
(hvAb, sample #9) and the Lower Banner Virginia coal (also hvAb, sample #6) do not
fall close to the cluster with other hvAb coals. Although the Lower Banner coal
has been found to be different from other hvAb coals petrographically, similar data
is unavailable for the Lower Kittaning coal.

The clustering pattern of the corresponding tar data set is almost the same as
that for the coal data; the scores of the coal and the tar are very close in this
two-dimensional canonical variate space. The closer the score of the tar sample to
that of the coal, the more alike their spectral patterns are. The average relative
deviation between the coal and tar scores is 10% in the direction of CVI and 25% in
the direction of CVII (this is related to the uncertainty in the predicted
composition). Based on this canonical score plot, it is possible to predict the
composition of the coal tars starting from the Py-MS patterns of the coals with the
help of Equation 4.

As mentioned before, the prediction is based on the location of the projected
score of the unknown sample in the canonical variate space of the coal data set.
Two samples were selected for jackknifing tests - one from each marked cluster
representing coals of different rank and origin (samples #16 and 2, respectively).
Figures 2 and 3 show the score plots for the first two canonical variates with the
score of the particular unknown sample projected. The topology of the CVI/CVII
space is preserved in both cases (Figures 2 and 3); the projected score of the
particular sample falls almost in the same location as if it were a part of the
data set.

Prediction Results

Because the projected score of the jackknifed sample 1jes in the same space as
the original data set, we have used a simple technique to predict the mass spectra
of the selected samples. For example, the spectrum of sample #16 is derived from
the distance weighted averaging of those of samples 15 and 17 (Figure 2).
Similarly, the spectrum of sample #2 is derived by weighted averaging of those of
samples 4 and 14 (Figure 3).

Since some coal and tar components are not strongly represented in this space
the distance weighted averaging method makes the assumption that clustering
behavior observed in canonical correlation space is representative of overall
clustering tendencies. This assumption can and should be verified by inspection of
clustering behavior in multidimensional factor space.

Figure 4a, b, ¢ shows the spectra of the IL #6 coal, that of the corresponding
tar, and the predicted tar. Most of the components present in the coal spectrum,
Figure 4a, are also seen in the tar spectrum, Figure 4b. For example, the mass
peaks at m/z 94, 108, 122 (“"phenols"), 110, 124, 138 ("dihydroxybenzenes"); 142,
156, 170, 184, 198 ("naphthalenes"); 168, 182, 196, 210, 224 ("acenaphthenes") and
178, 192, 206 ("phenanthrenes/anthracenes") are all found in both the coal and the
tar spectra. The differences between these two spectra should also be noted here.
The higher molecular weight masses all have stronger signals in the tar spectrum,
and the patterns of the components such as naphthalenes (m/z 142, 156, 170, 184),
acenaphthenes (m/z 168, 182, 196) and anthracenes (m/z 178, 192, 206) are different
in the tar spectrum. The naphthalene series reaches its maximum at at m/z 156 in
the coal spectrum, and at m/z 170 in the tar spectrum; similar shifts in the
relative intensity patterns are observed for other components mentioned above. The
predicted spectrum, Figure 4c, shows that it preserves the spectral subpatterns of
the individual components. Also note that the ratic of the peak heights between
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and within separate components in the original tar spectrum (Figure 4b) and the
predicted spectrum (Figure 4c) is alike.

Figure 5a, b, c shows the spectra of a typical Eastern hvAb coal from
Pennsylvania, of the corresponding tar, and of the predicted tar. In this case the
spectral subpatterns of the important components are markedly different between the
coal and the tar. Nevertheless, when comparing Figures 5b and 5c the predicted and
measured tar patterns show a very high degree of similarity and are distinctly
different from the corresponding patterns in Figure 4.

CONCLUSIONS

The data presented here demonstrate that pyrolysis mass spectrometry in
combination with canonical correlation analysis enables modeling and prediction of
complex coal conversion processes such as the fixed bed liquefaction method. To
the best of our knowledge this represents the first time that the chemical
composition of coal-derived Tiquids has been predicted directly from feed coal
characterization data. Moreover, the method is completely general and can be
applied to all coal characterization data (whether obtained by conventional or by
advanced spectroscopic techniques) and coal conversion processes in which the end
products have been carefully characterized.

A shortcoming of the present study is the lack of a sufficiently large number
of feed coal/coal tar pairs to allow adequate modeling and prediction of coal
conversion behavior for more than two coal clusters. Also, a somewhat simplistic
method was used to calculate predicted tar spectra based on a distance weighted
average of the two nearest neighbors in a two-dimensional canonical correlation
space.
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TABLE I
GEOGRAPHICAL ORIGIN AND RANK INFORMATION OF NINETEEN COAL SAMPLES
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| SERIAL #] PsSOC # GEOLOGICAL INFORMATION RANK INFORMATION

1 - Eastern/Appalachian, OH #6 hvAb
2 1481 ibid, Upper Clarion hvAb
3 - ibid, Wellmore #8 hvAb
4 375 ibid, Hazard #9 hvAb
5 267 ibid, Clintwood hvAb
6 1472 ibid, Lower Banner hvAb ™
7 - ibid, Arkwright hvAb
8 1469 ibid, Mary Lee hvAb
9 123 ibid, Lower Kittaning hvAb
10 1471 ibid, Pee Wee hvAb
11 306 ibid, OH #12 hvAb
12 296 ibid, OH #5 hvAb
13 1475 ibid, Elkhorn #3 hvAb
14 275 ibid, OH #6A hvAb
15 1492 Interior/Eastern, IL#5 hvBb
16 - ibid, IL#6 hvCb
17 1323 ibid, IL#6 hvChb
18 181 ibid, Upper Block sub. A
19 1520 N. Great Plains/Fort Union, Wyodak sub. C
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Figure 1. Score plot in the CVI/CVII space for both the coal and the tar samples.

Note that only the means of the three scores for each category are plotted.
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Figure 2. Effect of removing sample #16 from the coal data set on the score plot
in the CVI/CVII space. Note the projected score of sample #16 (marked by *).
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figure 3. Effect of removing sample #2 from the coal data set on the score plot
in the CVI/CVII space. Note the projected score of sample #2 (marked by *)
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Figure 4. Pyrolysis mass spectrum of: (a) I11inois #6 hvCb coal; (b) direct probe
mass spectrum of the corresponding tar, and (c¢) mathematically predicted spectrum.
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Figure 5. Pyrolysis mass spectrum of;:(a) Upper Clarion hvAb coal; (b) direct probe
mass spectrum of the corresponding tar, and (c) mathematically predicted spectrum.

241




