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INlRODUCTION 
This Henry H. Storch Award review summarizes the research programme of the author 
during his professional career in the subject area of coal and carbon science. Marsh is 
a native of North East England well known for its coal-fields and for the massive 
transportation of m a l  into Newcastle upon Tyne for shipment lo the open-fires of the 
City of London. Marsh as a schoolboy grew up within a quarter mile of one of the 
largest collieries in Co. Durham. The noise and dirt of coal mining became part of his 
life. On leaving school and entering University he had no intention at all of continuing 
this association with coal. But the British Association for the Advancement of Science 
held its annual meeting at the University and organized works visits. Marsh, as an 
undergraduate. was asked to lead one of these visits. yes to a coal mine, and so he 
became the "expert" of the graduate year in matters of coal. After graduating. Professor 
H. L. Riley was asked to undertake a study of dangerous swelling coals so modified by an 
igneous dyke. Marsh was offered the research contract, he accepted. and so inevitably 
commenceda career in coal. 

IGNEOUS DYKE INTRUSIONS 
This study of a Durham coal formed the basis of the PhD Thesis (1948) but was not 
published until 1971 (1) . The Hutton seam (32.7 wt.% volatile (daf) and 86.3 wt.% C 
(daf)) had been penetrated by a whinstone dyke, 30 m thick and coals had been modified 
lo about 65 m away from the dyke interface. Simulations by very slow carbonizations 
gave indications of maximum temperatures of 4 0 0  OC reached by coal during this 
thermal metamorphosis. The dangerous swelling properties in coke ovens appear to be 
associated with a mild softening of the coal involving breakage of the hydrogen-bonding 
with some release of small molecules, followed by cooling with the re-establishment of 
a higher branch-point density, this maintaining a high coal viscosity and creating 
swelling dangers. 

LtlCf?OFOf?OSlTY 
Following some years of research into microporosity of carbon, attention was directed to 
coal materials which were obviously much more difficult to characterize. Microporosity 
in coals exhibits three aspects of study (a) effective surface area (b) pore shape and 
size distributions and (c) variations in surface functionality. Coal is not of course a 
rigid structure. In an initial paper Marsh (2) reviewed the methods of surface 
chemistry then available, of heats of wetting. neon adsorption and adsorption of nitrogen 
and carbon dioxide. The use of nitrogen at 77 K is unsatisfactory because of slow 
activated diffusion effects, isotherms of this gas not describing thermodynamic equilibria. 
Heats Of wetting by methanol had to be adjusted because of different polarities of coal 
surfaces. The need was to obtain isotherms of molecules such as carbon dioxide at 
temperatures above 273 K. If adsorbate pressures were c .01 MPa then the maximum 
P/Po values were only of the order of 0.02 and clearly Langmuir or BET equations 
could not be applied. 
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Two events changed the course of this research. First the Russian literature describing 
the use of the Dubinin-Polanyi (D-P) and later the Dubinin-Radushkevich (D-R) 
equations was filtering into the laboratories of Western Europe. Second, Dr. Teresa 
Siemienieswka of Poland came to the NCRL for a period of study financed by the British 
Council. Together we were able to interpret adsorption isotherms, 0 to 0.02 pCp0. of 
carbon dioxide, 273 K and 293 K and compare with isotherms at 195 K (3). It was 
concluded that this method of adsorption of carbon dioxide gave surface area values 
agreeing with accepted values for low rank coals but which with increasing rank became 
progressively greater, rising to 300 m2g-1 for the high rank anthracites. Here the 
replacement of hydrogen-bonding in the bituminous coking coals by carbon-carbon 
covalent bonding had reduced the sizes of the microporosity into the range of 
ultramicroporosity which is accessible to small molecules only at 273 K and above. 
Marsh and OHair (4) took the subject somewhat further by adsorbing nitrous oxide and 
carbon dioxide on coals and comparable microporous carbons. The D-R plots of log na 
(na = amount adsorbed in mmol 9-1) against log2 (p/pO) are sensitive to non- 
equilibriated sections of the isotherm, usually at the low relative pressure end. The 
point was made of the futility of attempting to accommodate such isotherms mathematically to 
provide "correct" surface area data. Working now with French colleagues (5 ) ,  studies were 
extended to cokes from coals where the gradients of the D-R plots were related to an average 
pore size. 
Even to those working in the subject area, the reasons for the general acceptability of 
the D-R equation were not always apparent. Using carbonized anthracite as a material 
from which to obtain isotherm data, Marsh and Siemieniewska (6) attempted to explain 
the applicability of this equation. The linearity of the D-R equation is the direct result 
of the frequency distribution of free energies of adsorption obeying, e.g. a Rayleigh or 
Gaussian form of distribution. It is difficult to know from the Russian literature if this 
was their starting point in the development of the D-R theory. With the arrival of new 
students, Freeman, Rand and Campbell (7-12). the interpretations and uses of the D-R 
approach were explored. In more recent times, the pragmatic use of the D-R equations 
has been set out (13,14) in a simplified form to explain how gradients of D-R plots. 
intercepts and deviations from linearity are interpretative devices lo characterize and 
distinguish porosities. Rodriguez and Marsh (15) compared adsorption isotherms of iodine 
and carbon dioxide. Iodine induces swelling of coals without solubilization. FTlR spectra 
of iodinated coals indicate changes in hydrogen-bonding within the macromolecular 
network (16). Thus the adsorption of iodine is indicative of flexibility in the walls of 
the microporosity in coals. Jackson (17) and Butler (18) in their Theses describe 
studiesof a rank range of coals by the polar NH3 and S o n  adsorbates in attempts to 
characterize surface functionalities in fresh and oxidized coals. Amounts of NH3 adsorbed 
by coals are used to calculate contents of carboxylic acid. phenolic, total hydroxyl and 
Carboxyl groups on coal surfaces. Bromine (18) induces swelling of wals and 
measurements of cross-link densities indicate a minimum in coals of 80-85 wt.% C. 
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During coal pyrolyses the lignites, subbituminous and anthracites do not pass through a 
fluid phase. Resultant chars are pseudo-morphs of parent coal. The caking and coking 
coals form a plastidfluid stage on carbonization out of which develop anisotropic 
components which eventually constitute structure in the resultant cokes (most often 
metallurgical cokes). The study of the growth of these anisotropic components (later 
called the mesophase) became a major contribution to coal science. It began with a study 
in Penn. State University U S A .  (19) of carbonizations of anthracene and biphenyl 
under pressure of 300 MPa. Instead of formation of a compact coke, SEM revealed 
clusters of spheres, the botryoidal structures. now called mesocarbon beads. These were 
later identified as spheres of mesophase, ie. the discotic, aromatic. nematic liquid 
crystal systems, by Brooks and Taylor (20). The next stage was to examine the 
chemistry of formation of other graphitizable carbons, i.e. from Gilsonite pitch and 
polyvinylchloride (21). At the same time, Evans and Marsh (22) initiated studies of the 
mass spectrometry of formation of anisotropic carbons from model organic compounds. 
The role of heteroatoms in cyclic systems and enhancement of graphitizability were 
published by Marsh (23) followed shortly by the first of a major series of 
papers describing the role of mesophase during the carbonization of coking coals (24). 
Earlier wolkers (25.26) had long recognized the need to explain the coking principle. 
Whereas in pitch and model compound carbonizations. when the process of 
dehydrogenative polymerization established mesogen systems, molecular weights > 800 
amu, it was the fragmentation of the macromolecular system of coking coals in a fluid 
matrix which established comparable molecular mesogen systems. Thus the concepts of 
liquid crystal chemistry were related to coke formalion from coals (24). 

Inter-relating with this approach to coal chemistry were discussions taking place into 
the chemistry of the delayed coker, needle coke versus shot coke (27.28). the 
development of mesophases for carbon fibre manufacture and the explanation of the 
Dominant Partner Effect (DPE) in terms of hydrogen donor facility. In the late  O OS, I. 
Mochida and A. Grint took up senior positions in the NCRL and together with Marsh 
made significant contributions to understanding the chemistry controlling size, shape, 
Viscosity and coalescence behaviour of the wide range of liquid crystal systems. Several 
reviews were prepared (30-37). The findings of the liquid crystal study were published 
over several years (38). In the final stages of coal or pitch carbonizations, the size, 
shape and ability to coalesce dictate the resultant optical texture of the cokes. By optical 
texture is meant the characterization by optical microscopy of the isochromatic units 
within the overall anisotropic appearance of polished coke samples. The growth of liquid 
crystals is a function of the size and shape of mesogen molecules in the fluid pitch 
matrix, the viscosity of both the fluid and liquid crystals and the time/temperature 
dependance of viscosity of the liquid crystals. Chemical cross-linking continues to 
develop between molecules in the liquid crystals. Dominantly, the relative react 
mesogen molecules are all important. The presence of functionality and heteroatoms 
enhances reactivity so promoting increases in average molecular weight of pitch 
constituent molecules at that stage of carbonization processes where the overall viscosity 
of the fluid matrix is too high to allow effective growth. Thus the growth process is 
restricted. The molecular reactivity persists within the liquid crystals which rapidly 
increase in viscosity within themselves. Coalescence is severely restricted and surface 
fusion results to establish the fine-grained mosaics, c 5 bm, of optical textures often 
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found in metallurgical cokes. The absence of functionality, (subbituminous to 
bituminous coals ) enhances the stability of polycyclic aromatics which now dominate 
pitch chemistry. Much lower viscosities are attainable. the liquid crystals are more 
stable and can undergo coalescence resulting in larger sizes of optical texture, about 20 
pm, within coke structure. 

Blendina 
Effective upgrading of rank of coal can be achieved by w-cahnbat ion of weakly 
caking coals with suitable additives, petroleum or coal- based. The Dominant Partner 
Effect, ie. where small quantities of additives can disproportionally up-grade sizes of 
optical texture of cokes, essentially is the introduction of hydrogen transfer compounds 
which stabilize free radical intermediates so promoting stable mesophase to the higher 
temperatures of lower viscosities. 

The chemistry of stabilization of pyrolysis products of coal ( to form anisotropic carbon 
ultimately ) is essentially similar to that of coal-derived liquids where early coking in 
the process is to be avoided (39). Advances made in the understanding of coal 
carbonization techniques benefited from the simultaneous and related studies of coal 
liquefaction, delayed coking and mesophase fibre production. 

A major thrust in coal carbonization is towards the use of cheaper coals of lower rank 
than the coking coals. Hence coal blending has been introduced into coke making for many 
years. The use of pitch as an additive, added directly or as pellets to improve coke 
quality, is now industrial practice. Coals are a heterogeneous composite of macerals and 
mineral matter. The wide variation in coal genesis, origin of plant, swamp conditions, 
tectonic disturbance. etc. have created very specific chemistry within macerals. This 
complexity requires empirical searches for suitable coal blends which may contain from 
10 to 20 coals. The purpose of coal blending is to create a "coal soup" in the fluid 
phase with just sufficient aromaticity, hydrogen transfer facility, etc. to form an 
anisotropic coke with minimum size of optical texture, i.e. about 1 pm in size. 
The interlocking interfaces of these small mosaics of isochromatic units of mesophase 
create the required toughness in the cokes to resist degradation caused by pressure, 
attritional forces and chemical attack (40). The additions of pitches are essentially 
equivalent to adding coking coals to blends, coking coals having excess coking capacity 
and hence can be considerably diluted without loss of coke properties. Here this available 
hydrogen donating capacity promotes stability in the system and a larger size of optical 
texture. Totally isotropic cokes, without anisotropic constituent units derived from 
mesophase, tend to be glass-like and fracture similarly. 

Oxidation 
Oxidation of coals involves removal of hydrogen and chemisorption of oxygen. On initial 
heating the surface oxygen complexes can interact to establish a cross-linkage. This 
enhances branch-point density in the macromolecular structure of coal and the reduced 
ability for radical capping by mobile hydrogen transforms a coking coal into a non- 
coking coal. 
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The co-carbonization of oxidised coals with pitches and decacyclene. one of the strongest 
of hydrogen transfer model compounds, restores, to some extent, the coking properties of 
an oxidized coking coal. Fluidity is restored, reduction of oxygen groupings probably 
occurs and stability is re-introduced to the radical systems from the hydrogen donating 
additive (41). However although coal-tar pitches are all good blending agents, not all 
petroleum pitches are as effective (42). Structural components, fractionations and 
elemental analyses cannot predict hydrogen donating facility in pitches. So it is 
necessary to carry out tests involving, e.g. co-carbonizations with anthracene or 
phenanthrene and using 1 H NMR to monitor hydrogenated derivatives. 

STRUCTURE, GASIFICATION, COMBUSTION. 
Working with Stadler. Marsh (43) reviewed critically the methodolgy of structural 
analyses of coal carbonizations, with special reference to interpretations based on the X- 
ray a- and c- dimensions of the hypothetical "crystallite ". Later with Crawford (44) the 
powerful technique of phase contrast fringe imaging by TEM provided a more 
satisfactory explanation, in terms of lattice distortion, of the increase and decrease in c- 
dimensions of crystallites of X-ray diffraction data, with increasing carbonization 
temperature. 
Marsh maintained a simultaneous interest into mechanisms of coke gasification, in 1978 
reviewing the carbon-oxygen reaction (45), and in 1979 reviewing how reactivities of 
cokes may be enhanced by co-carbonizating coals with alkali salts (46). The development 
of structure in cokes and coals and effects on resultant coke properties were set out by 
Marsh and Clarke in 1986 (47). Aspects of gasification kinetics and hydrogasification 
are more recent studies (48,49) . During this period collaborative studies with Japanese 
laboratories examined coal carbonizations by 1 H NMR and esr techniques looking at the 
macromolecular structure of coals and the effects of iodine uptake (50). Most recently, 
interests have moved towards maceral analysis of coals, with rank, on combustion 
behaviour of pulverized coals in power stations. Crelling is a most supportive 
collaborator (51,52) . Correlations are being sori between detailed petrographic analyses 
of coals and reactivity of coal chars (53). A brief excursion was made into coal genesis 
because of the enthusiasm of Butler and Goodarzi (54) and we are having another look 
into solvent swelling of coals to relate to physical adsorption behaviour and peculiarities 
in carbonizations (55). 

COAL IN A MODERN WORLD 
Without doubt, coal as a combustible material will remain the principal source of 
industrial and domestic energy. But this energy conversion process is not without 
problems. Globally, the greenhouse effect is a catastrophic potential problem; acid rain, 
although a major problem can be resolved. Major thrusts for coal utilization in a 
modern world are towards more efficient and pollution free combustion. Other routes, 
e.g. combined cycle using say pressurized fluidized bed gasification, will utilize coals as 
feedstocks. The carbonization and gasification behaviour of coals and cokes therefore 
needs precise study. Although the future of metallurgical coke appears limited, the blast 
furnace will remain for the immediate future with coal providing energy and a reducing 
atmosphere by tuyere injection. Coal liquefaction and conversion should remain in 
research schools not only as an insurance for the chemical industry and for liquid fuels 
but also for the knowledge it provides of coal material. 
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