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INTRODUCTION

Despite considerable effort to understand the chemical nature of the organic and
inorganic portions of coal, and substantial advances in instrumentation and
methodologies, much of coal's chemical nature remains intractable. This paper
reviews methods and their limitations for the determination of specific minerals
in coal, and presents results of efforts at Consolidation Coal Company to
develop FTIR methods for routine coal mineralogy.

Mineral matter characterization has received considerable attention. Given and
Yarzab (1) discussed the problems posed by mineral matter in various coal
analyses.  Furthermore, mineral matter complicates the chemical treatment of
coal, It also has many adverse effects on commercial coal utilization. Coal
consumers pay to ship mineral matter, to accommodate its impact on capital
equipment and operations, and to dispose of the resultant ash. The impact of
coal minerals on utilization motivated Consol's initial interest in mineralogy (2).
The results reported here are from a second phase of the FTIR method develop-
ment, in which extensive improvements were made to the methods.

EXPERIMENTAL

DESCRIPTION OF SAMPLES

Small Data Set. Low-temperature (plasma) ashes {LTAs) were obtained from ten
diverse coal samples (Table 1), ranging in rank from lignite to lvb. Infrared
spectra were obtained of duplicate samples of each coal. A separate set of
duplicates was generated for four of the coals.

Large Data Set. LTAs were analyzed by FTIR for 50 coals, ranging in rank
from lignite to Ivb., These were a representative subset of duplicates of 95
unwashed and clean commercial coals from the eastern, midwestern and western
U.S. and Alberta, Canada. The 50-coal set contained no duplicates, but
different coal samples from the same mine were included.

Reference Minerals. The 42 reference minerals and the mineral classes used are
isted in Table 2. Most of the minerals were obtained from Ward's Natural
Science Establishment, Inc., Rochester, New York. Many of the silicate
minerals were American Petroleum Institute (API) standard samples or their
equivalents. Numbers given in the table (e.g., kaolinite 4) refer to the API
standard designation.

METHODS
Coals ground to -60 mesh were low temperature (O, plasma) ashed for about

100-125 hours for bituminous coals and 200 hours for lower rank coals. Ashing
containers were made of Pyrex or ceramic.
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Mineral standards were hand crushed to -1/4 inch, then ground to a fine
powder in a ball or Bleuler mill. The powder was aerodynamically classified,
and the finest fraction was collected. This was accepted as a mineral standard
if 90% or more by weight was 5 um and smaller particles. Duplicate 13 mm KBr
pellets were prepared and the spectra were weight-scaled by reported
techniques (3,4). With one exception, all the mineral standard spectra were
averages of spectra from duplicate pellets.

LTA samples were ground for 30 minutes in a Wig-L-Bug (15 mg LTA, 50 mg
KBr and 500 mg acetone in an agate vial), dried and stored in a dessicator.
13 mm KBr pellets were made and resulting spectra were weight-scaled (3,4).

All spectra were run on a Nicolet 7199 FTIR spectrometer equipped with a wide-
band MCT detector. A Nicolet least-squares analysis program (MCOMP) was
modified extensively for efficient use with a large number of reference minerals.
The reference mineral with the lowest negative concentration was omitted upon
each iteration, until only non-negative results were obtained. Generally 12 to
18 minerals remained in the final calculation.

For PLS or PCR calculations, the spectra were transferred to a DEC VAX
11/750 computer. The PLS and PCR program with cross-validation was provided
by David Haaland of Sandia National Laboratory (5).

RESULTS AND DISCUSSION

A CRITIQUE OF METHODS FOR COAL MINERALOGY

This survey of five major methods for coal mineralogy and their limitations
includes only methods which can provide a "complete" mineral analysis.
Methods of limited applicability, such as Mossbauer, are omitted.

X-ray Diffraction. XRD is the most common method used for coal miner-
alogy (6,7,8). Its major advantage is the ability to unequivocally identify many
minerals. The main disadvantages are: 1) reliance on reference minerals,
2) requires careful attention to sample preparation, and 3) low sensitivity to
certain minerals (especially many clays) due to poor crystallinity and to particle
orientation effects. Many laboratories analyze a separate concentrated clay
fraction (less than 2 um or 5 um). However, sensitivity is still low and other
limitations may arise: 1) the separated clay fraction may not be representative,
and 2) the separation procedure can alter the sample. The original coal,
instead of the LTA, can be analyzed by XRD. However, this is not satis-
factory, since sensitivity is even lower. An extensive interlaboratory
comparison of XRD results with Illinois 6 coal showed highly variable
results (7). That study also included results from FTIR, SEM and other
methods.

Infrared Spectroscopy. The use of IR (9,10,11,12) and FTIR (3,4) for coal
" mineralogy has been reported. Painter and coworkers (3) demonstrated that
FTIR can provide a virtually complete analysis. Painter, Brown and Elliott (4),
and others (9,10,11) discuss sample preparation, reference minerals, and data
analysis. The advantages of IR are: 1) high sensitivity to molecular structure,
2) unequivocal identification of a number of minerals, 3) small sample size (a
few milligrams), and 4) rapid analysis time (once LTA is available). Disadvan-
tages include: 1) reliance on reference minerals, 2) requires careful attention to
sample prepraration, and 3) limited selectivity (discrimination among similar
minerals).
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The problem with limited selectivity includes some of the minerals which are
problems for XRD: illite, muscovite, smectites and mixed-layer clays. Poor
crystallinity creates problems with both XRD and FTIR, The IR spectrum of an
amorphous material lacks sharp distinguishing features but retains spectral
intensity in the regions typical of its composition., The X-rav diffraction
pattern shows low intensity relative to well-defined crystalline structures. The
major problem for IR is selectivity: for XRD it is sensitivity. In an inter—
laboratory FTIR comparison (7), two laboratories gave similar results for
kaolinite, calcite, and illite, but substantially different results for
montmorillonite and quartz.

Electron Beam/X-ray Spectroscopv. Several methods based on point count or
automated image analysis (ATA] in scanning electron microscopy-energv disper-
sive X-ray have been reported (13-18). Point count analysis can determine
mineralogy; AlA can also determine the size distribution of the minerals. These
methods obtain a point-by-point or particle-by-particle elemental analysis. A
mineral distribution and analysis is obtained by classifving each elemental
composition into one of the mineral categories. Such methods have several
advantages: 1) they can be automated, 2} the composite elemental composition
can be checked against that of the bulk sample, 3} it is possible to run coal
(not necessarv to obtain LTA), and 4) they provide some information on statis—
tical and perhaps spatial, size, or morphological distribution of the minerals.
For these reasons, such methods have become more popular in recent vyears,
The major disadvantages are: 1) the chemical information and thus the selec-
tivity is limited, since it uses only elemental composition, 2) it relies on a
suitable classification scheme for mineral categories, and 3) data collection can
be time-consuming (especially for AIA), requiring many hours per sample.

Optical Microscopy. Optical microscopv is the traditional tool of geologists and
petrographers for mineral identification and characterization (19). It has twn
main advantages: 1) positive identification of minerals can be achieved, and
2) information is obtained on mineral distribution and morphology. However,
quantitation is difficult, and the analysis is time-consuming, requires highly
trained technicians, and is not amenable to automation. Although in common
use in petrographic studies, such methods have been displaced bv XRD, IR,
and SEM-EDS methods for mineralogical studies.

Thermal Techniques. Thermal techniques, especially differential thermal
analysis (DTA) have been used for mineral identification (19) and for coal
mineralogy (20). The advantages of thermal techniques are: 1) small sample
size, 2) littie sample preparation (applicable to whole coals),” 3) potentially
rapid analysis, and 4) information relevant to combustion behavior may be
provided, The disadvantages are: 1} the chemica! information is limited,
resulting in a lack of selectivity due to overlapping curves for individual
minerals, 2) identification/quantification depends on reference minerals (though
perhaps less sensitive to such problems than XRD or IR), and 3} it is not
developed for quantitative use. Interpretation of thermal data is difficult, but
could be improved by appropriate software. Variations, such as using different
gases to highlight or suppress features, have been used (20). Detection limits
of less than 1 wt % to about 30 wt % were reported for différent minerals.

Ceneral Comments on Mineralogical Methods. The lack of a measure of
quantitative accuracy is a general problem with mineralogy. A major limitation
for XRD and IR methods is the use of reference minerals, and the standards
used are from geological sources other than the coal analyzed. This limitation
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will be avoided by only physical separation of the coa! minerals or by data
analysis techniques (such as factor analysis) which do not require reference
minerals. Many studies have reported successful quantitation of mineral
mixtures, This is a necessary, but not sufficient, criterion for a good
mineralogical analysis. The differences between mineral mixtures and authentic
samples are considerable, and good performance on real samples is nct guaran-
teed. The major limitations of SEM-EDS and related techniques are appropriate
classification of the elemental data, and obtaining a statistically sufficient
number of data points. For classification of data, factor analysis, cluster
analysis, or related multivariate techniques appear to be suitable (21).

The IR methods have progressed from hand-drawn baselines and peak height or
area for quantitation, to spectral subtraction, to least~-squares methods. Least-
squares analvsis eliminates the reliance on single peaks for quantitation and the
subjectivity of spectral subtraction. However, negative concentration coeffi-
cients are a problem with least-squares analysis, since they have no physical
meaning. Negative components can be omitted according to some criterion and
the least-squares process iterated until onlv positive concentration coefficients
remain. However, this does not ensure that the least-squares solution is a
global minimum.

Haaland and coworkers (5) discussed other problems with classical least-sauares
(CLS) and its performance relative to partial least-squares (PLS) and factor
analysis (in the form of principal component regression). One of the
disadvantages of CLS is that interferences from overlapping spectra are not
handled well, and all the components in a sample must be included for a good
analvsis. For a material such as coal LTA, this is a significant limitation.

Factor analysis extracts information from the sample data set (e.g., IR spectra)
and does not rely on reference minerals. However, because abstract factors
have no physical meaning, reference minerals may be needed in target trans-
formations or other procedures to extract mineralogical information. One
valuable piece of information obtainable without the use of extraneocus data is
the number of components required to represent the data within experimental
error. Reported applications of factor analysis to mineralogy by FTIR are
few (12). However, one commercial laboratorv is offering routine FTIR mineral
analyses to the petroleum industry, based on related methods (B).

The next section of this paper descrihes the use of classical least-squares
analysis of FTIR data to determine coal mineralogy. This is followed by
promising preliminary results obtained using factor analysis techniques.

RESULLTS USING CLASSICAL LEAST-SQUARES

Reproducibility.  Mineralogical results from the ten-coal set (Table 3) are
presented as ranges of values. [n most cases, the reproducibility is good.
Quartz, for example, shows consistently high reproducibility. However, illite,

mixed-layer clays and montmorillonite in the first four coals show high vari-
ability. These minerals are similar in composition and spectral features. The
variability in the FTIR results for these samples is related to variability in the
spectral data. The set of ten duplicate spectra gave a pooled SD of 0.03 abs,
while the separate set of four duplicate spectra gave a pooled SD of 0.08 abs.
Results from the first four samples in the table included the poorer spectral
data, while the results from the last six samples were obtained from the better
spectra. The reproducibility for total clay content is good, even when vari-
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ability in individual clay concentrations is high. Iron sulfides, oxides and
sulfates also show some variability, particularly in the first and fourth samples.

Accuracy. Although there is no way to measure the accuracy of the FTIR
mineralogical results, there are three areas in which it can be addressed (2,4).
The first method is to compare pyrite results obtained by FTIR with the
conventional ASTM determination. The agreement (Figure 1) is guite good over
the range of 2.9 to 28.1 wt % pyrite in the LTAs from the ten coals. Similar
results were obtained based on the 475-400 cm™! region for a smaller sample
set (2). The present results are based on the 1575-400 cm™! range. The good
agreement for the present data set is surprising, since the only spectral
feature reported for pyrite in the mid-infrared is at ca. 415 cm™ !, In these
spectra, the noise leve! is high near 400 cm™!, and the identification of such a
feature is not clear. It appears that the results are derived mainly from base-
line curvature (resulting from the Christiansen effect). For all the iron sulfide
minerals in the reference set, the baseline absorhance is near zero from ca.
1300 to 400 cm™!, but from 1300 cm™! to 4060 cm™! it curves upward.

The second method for indicating accuracy is to examine the spectral residuals
from the least-squares fits (Figure 2, Table 4). The worst case was the lignite
(coal SL), the large misfit at ca. 1380 cm™! heing due to the omission from the
reference minerals of nitrate, presumably produced in the low-temperature asher
by fixation of organic nitrogen (23). The reproducibility of the 28 original
spectra (pooled SD) was 0.05 abs, slightly higher than the poonled standard fit
error of 0.04 abs (without the lignite). However, the ten original duplicate
spectra gave a pooled standard deviation of only 0.03 abs, which is slightly
lower than the fit errors for most of these samples. [n general, the fit error
approached the experimental error in the original data.

The third method for assessing accuracy is to calculate an elemental composition
for each LTA's oxidized ash, based on the reference mineral compositions.
Reasonably close agreement between the actual and calculated elemental composi-
tions would substantiate (but not prove) the mineral analysis. The standard
error of prediction (SEP) for CaO, Fe,0,, SiO, and Al,0, (Table 4) ranged
from 3.4 to 6.7 wt % for the various coals. The global SEP was 4.8 wt §. By
major ash element, the SEP values were 2.8 for CaO, 5.6 for Fe,0,;, 4.5 for
Si0, and 5.8 for Al,0,. SEP values ranged from 0.3 to 5.7 wt % CaO, 2.3 to
10.3 wt % Fe,0,, 0.1 to 11.6 wt % SiO, and 3.0 to 5.6 wt % Al,0;. Inspection
of the elemental results also show some bias. CaO values were usually low,
Fe,0; values were usually high, and Al,0; values were always low. Calcite
impurities may be present in some of the reference spectra, or something else
may interfere with the calcite. The high Fe,0, values, even though the pyrite
values appear good, indicate that the determined iron oxides, sulfates, and/or
siderite concentrations are too high. Somehow, certain iron minerals seem to be
replacing or supressing the appropriate aluminosilicates in the analysis.

In the next section, the potential for factor analvsis and related chemometric
techniques for providing improvements in the determination of minerals in coal
by FTIR are explored.

RESULTS USING PRINCIPAL COMPONENT REGRESSION (PCR)

PCR is a technique in which principal component analysis {one form of factor
analysis) of the spectra is followed by regression of the factor scores to
calibrate and predict an independently-measured quantity. BResides the spectral
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data, these calculations require other data. An accurate minera! analysis of
each sample could be used to obtain a calibration. Because this is not possible,
one is limited to modeling and predicting other measurable properties such as
ash combustion behavior. It is possible to by-pass the mineralogy altegether,
and model the desired properties or behavior directly from the LTA spectra.
Ash property data which are readily accessible are ASTM ash fusion tempera-
tures (reducing and oxidizing conditions) and ash elemental composition. PLS
and PCR are linear models, but are capable of modeling some non-
linearities (5). Ash elemental concentrations should be linearly related to
intensities of bands in the infrared spectra (under ideal circumstances). Thus,
PLS and PCR are expected to do a good job in modeling ash composition.
However, ash fusion temperatures are not expected to be linearly related to
spectral features.

Infrared data in the 1575-400 cm~! region (1218 points/spectrum) from LTAs
from 50 coals (large data set) were used as input data to both PLS and PCR
routines. This is the same spectral region used in the classical least-squares
analysis of the small data set. Calibrations were developed for the eight ASTM
ash fusion temperatures and the four major ash elements as oxides. The
program uses PLS1 models, in which only one variable at a time is modeled.
Cross-validation was used to select the optimum number of factors in the model.
In this technique, a subset of the data (in this case five spectra) is omitted
from the calibration, but predictions are made for it. The sum-of-squares
residuals are computed from those samples left out. A new subset is then
omitted, the first set is included in the new calibration, and additional residual
errors are tallied. This process is repeated until predictions have been made
and the errors summed for all 50 samples (in this case, 10 calibrations are
made). This entire set of calculations is repeated once each time an additional
factor is included in the model, The optimum number of factors is near the
point at which the residual error reaches a minimum.

Results from these preliminary modeling efforts with the large data set are
shown in Table 5. These results were obtained with centering (x and y) and
scaling (x) as a data pretreatment. Only PCR results are shown, even though
the PLS calculations took less computing time and gave slightly better results.
The PCR model is preferred because it provides some additional information on
our original data set. Results are depicted graphically in Figures 3 and 4 for
the best and worst calibrations, respectively. The main measure of the success
of these models is the SEP. For ash fusion temperatures, the SEPs were in the
range of 50 to 78°F. The fusion temperatures at oxidizing conditions generally
gave slightly better results than those at reducing conditions. These values
represent errors somewhat larger than ASTM repeatability and reproducibility
limits. The largest single prediction error for these models was about 200°F.
This is no larger than the spread in interlaboratory results seen in round robin
analyses of standard samples. Furthermore, these results appear to be equiva-
lent to the best predictions of ash fusion temperatures available from ash
elemental compositions (24,25,26). Many of those models have incorporated
ratios, squared terms and log terms to get better results. It appears that the
PLS and PCR models work reasonably well for modeling non-linearities in this
case.

The PCR results for CaO, Fe,0, Si0, and Al,0, are quite good, as anticipated.
The SEPs for CaO and Fe,0; of 1.7-1.8 wt % are higher than the ASTM repro-
ducibility limits, but the results for SiO, and Al,0, are within the ASTM limits
for those elements. Note that all these errors are better than the value of 4.8
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resulting from the mineralogical analysis. (However, the mineral analysis was
not optimized to predict ash elementals.)

The calibrations obtained are valid over a significant range of each property.
It is feasible to predict all these properties from the LTA from a small sample of
coal, shoul!d that be desired. These results mainly show that the methods
employed can model other ash properties which are more closely related to
large-scale combustion behavior. This is one area where further study is
desirable.

Although the software used was not a full-featured factor analysis program,
portions of the printed output are useful in studying the spectral data set.
The table below shows some information obtainable from PCR models (large data
set) with 5, 10 and 13 factors. |In this case, the '"factors" are principal
components derived entirely from the sample data set. PLS factors are not
interpretable in the same manner.

Prediction Residual
Sum of Squares

{Reconstruction of % of Total Spectral
No. of Factors Original Data) Variance of Data Set
5 89.9 93.5
10 28.1 98.0
13 11.5 99.2

An increase from 5 to 10 in the number of factors represenrting the original data
results in a substantial reduction in the error. Because of the data pretreat-
ment used, the spectral error cannot be directly compared to the experimental
error determined from the data set. When five factors were used, two different
lignite samples were flagged as possible outliers based on their spectral
variances relative to the rest of the data set, With ten factors, one of the
lignites was accommodated within the factor model (although ten factors may not
have been required to accommodate it). With thirteen factors, both lignites
were accommodated.,

CONCLUSIONS

Experience in this laboratory has shown that even with careful attention to
detail, determination of coal mineralogy by classical least-squares analysis of
FTIR data may have several limitations, Factor analysis and related techniques
have the potential to remove or lessen some of these limitations. Catlibration
models based on partial least-squares or principal component regression may
allow prediction of useful properties or empirical behavior directly from FTIR
spectra of low-temperature ashes. Wider application of these techniques to coal
mineralogical studies is recommended.
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TARLE 1

DESCRIPTION OF COALS

Coals Rank Seam - Description

P1 hvAb Pittsburgh - Underground, Clean Coal, Greene Co., PA

EH hvAb Elkhorn 3 - Underground, Unwashed, Breathitt Co., KY

] hvBb Ilinois 5,6 - Surface, Clean Coal, Jackson Co., lL

SL Lig Scranton - Surface, Mercer Co., ND

12 hvBb IMlinois 6 - Underground, Clean Coal, Jefferson Co., IL

13 hvBb llinois 6 - Surface, Clean Coal Perry Co., IL

P2 hvAb Pittsburgh - Underground, Clean Coal, Marshall Co., WV

P3 hvAb Pittsburgh - Underground, Ciean Coal, Monongalia Co., WV

GE hvAb No. 2 Gas, Upper and Middle Eagle - Underground, Clean
Coal, Raleigh Co., WV

PO lvb Pocahontas 3 - Underqround, Clean Coal, Buchanan Co.,
VA

TABLE 2

REFERENCE MINERALS

MAIN CLASSES

Kaolin - Kaolinite 4, 5, 6, Dickite 16, 27

Mica - Biotite, Phlogopite, Muscovite

Itlite - lllite 36, Illite-Bearing Shale

Mixed-Layer Clays - Metabentonite 37, 42

Montmorillonite - 21, 22A, 22B, 24, 25, 26, 31

Feltspars ~ Albite, Anorthite, Orthoclase

Chlorite - Chlorite

Misc. AISi - Attapulgite, Halloysite, Pyrophyllite 48

Quartz - Quartz, Agate

Fe sulfides - Marcasite, Commercial Pyrite, Mineral Pyrite, Pyhrrotite
Fe oxides - Goethite, Hematite, Magnetite

Fe sulfate - Difference spectrum weathered minus unweathered pyrite
Siderite - Siderite

Calcite - Calcite, Aragonite

Gypsum - Gypsum, Drierite

Dolomite - Dolomite

GROUPED CLASSES

Clays - Kaolin, lllite, M. L. Clays, Montmorillonite, Misc. AISi
Other AISi - Mica, Feldspar, Chlorite, Quartz

Sulfate - Fe Sulfate, Gypsum

Carbonate - Calcite, Siderite, Dolomite

Fe Altered - Oxides, Sulfate

In addition to spectra of the 42 minerals shown above, the least-squares compo-
nents included 3 "spectra" representing 1) moisture in KBr blank (obtained by
subtraction of 2 KBr blank spectra), 2) a constant baseline offset (1 abs from
4000 to 400 cm~!), and 3) a sloping linear baseline (line from 1 abs at
4000 cm~! to 0 abs at 400 cm~!}. Normalization of results used only the 42
mineral components, and disregarded these three components.
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TABLE 4

SPECTRAL FIT ERRORS AND ELEMENTAL PREDICTION ERRORS
FROM FTIR MINERALOGY

Spectral Fit Error (1575-400 cm 1),

Std. Dev. in abs. SEP Oxide
Coal Run 1 Run 2 Run 3 Run § wt § of Ash
P1 0.028 0.027 0.038 0.041 4.4
EH 0.030 0.033 0.023 0.029 4.3
1 0.026 0.026 0.029 0.031 4.7
SL - 0.250 0.149 0.194 4.1
12 0.033 0.028 5.2
13 0.037 0.039 6.7
P2 0.040 0.040 4.4
P3 0.037 0.036 5.5
GE 0.038 0.037 3.4
PO 0.022 0.021 6.2

With SL, pooled std. dev. = 0.093
Without SL, pooled std. dev. = 0.041

TABLE 5

PRINCIPAL COMPONENT REGRESSION CALIBRATIONS
FOR SELECTED ASH PROPERTIES

Magnitude
of Max.

No. of Prediction Range of Input Data
Type Factors SEP Error Min. Value Max. Value
Ash Fusion Temperature, °F
RID 5 72.4 169.9 1918 2757
RST 5 77.9 153.5 1972 2808
RHT 5 65.9 201.8 2092 2958
RFT 5 56.2 157.6 2127 2968
oIiD 6 50.5 117.6 2115 2808
osT 5 60.4 149.8 2159 2858
OHT 5 54.0 163.8 2197 2881
OFT 2 61.1 148.1 2218 2769
Ash Element as Oxide, wt §
Sio, 10 1.38 2.81 29.15 56.45
Al,0, 13 0.74 1.33 9.12 27.34
Fe,0, 8 1.79 3.19 4.33 30.17
Ca0 3 1.73 6.88 1.07 30.11
/s
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Figure 1. Comparison of FTIR and
ASTM Results for Pyrite, wt % of LTA
(Solid Line - Parity, Dotted Line -
Least-Squares y = 0.985 x 0.098)
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Figure 3. PCR Model Results for
Al,0, wt % of Oxidized Ash (Best
Model of Ash Properties).
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Figure 4.

PCR Model Results for Ash

Softening Temperature (Reducing),
(Worst Model of Ash Properties).
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Figure 2. Spectral Residual for the Best
(Coal PO), Typical (Coal EH) and Worst

(Coal SL) Least-Squares Fits. Spectra
Shown are Original LTA (A, D, G),
Least-Squares Composite (B, E, H), and
Difference (Original Minus Composite

F, 1.




