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INTRODUCTION

In the future, jet fuels will need higher densities and higher heat contents.
These fuels will increase the range of aircraft and/or permit heavier payloads to
be transported. Furthermore, these fuels will also be required to funection as
heat exchange fluids to remove heat from leading edges and vital engine parts.
Very stringent specifications are placed on the composition, physical and
chemical properties, thermal stability, and stability upon storage of fuels for
commercial and military jet engines. Of the three basic hydrocarbon types --
paraffins, naphthenes (cycloparaffins), and aromatics -- naphthenes have the most
desirable properties for jet fuels. One potential source of such a fuel is coal.
Many of the compounds in coal are aromatic, and coal liquefaction products are
likewise highly aromatic. Coal liquids can be further hydrotreated to produce
naphthenes.

Many studies have involved the production of conventional and high-density Jet
fuels from coal liquids [1-21]. Sullivan et al., at Chevron Research Company,
Richmond, California, conducted a number of studies for the Department of Energy
to assess the feasibility of refining synthetic coal liquid feedstocks to distil-
late fuels, such as high-density jet fuels [5-14,22-24]. The upgrading of pro-
ducts from single-stage processes, such as SRC-II [5,8], H-Coal [6,8,14], and EDS
[7-8], and from two-stage coal liquefaction processes, such as the Lummus Crest
Integrated Two-Stage Liquefaction Process (ITSL) [9-11,13-14] and the HRI
Catalytic Two-Stage Ligquefaction Process (CTSL) [12-14], has been carried out.
"Key factors that determine how easy or difficult a particular syncrude is to
refine are EP [endpoint], boiling range, hydrogen content, and heteroatom con-
tent [14]."

In September 1986, the Fuels Branch of the Aero Propulsion Laboratory at Wright-
Patterson Air Force Base, Ohio, began an investigation of the potential for
production of jet fuel from the liquid by-product streams produced by the gasifi-
cation of lignite at the Great Plains Gasification Plant located in Beulah, North
Dakota. Funding was provided to the Department of Energy (DOE) from the Air
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Force to administer the experimental portion of the effort. The Morgantown
Energy Technology Center administered the effort (DOE Contract Number DE-FC21-
86MC11076) at Western Research Institute, which studied the potential of the
liquid by-product streams for the production of jet fuels {25). The Pittsburgh
Energy Technology Center (PETC) administered the effort (DOE Contract Number DE-
AC22-87PC90016) at the University of North Dakota Energy and Mineral Research
Center, which characterized these liquid by-product streams [26]. The PETC also
administered the effort (DOE Contract Number DE-AC22-87PC90015) of Amoco O0il
Company and Lummus Crest, which conducted a preliminary analysis of upgrading
alternatives for the production of aviation turbine fuels from the Great Plains
liquid product streams [27]. A small research effort was also conducted in-house
at PETC.

The in-house research effort at PETC sought to further characterize jet fuels
produced at Chevron and the coal-derived syncrudes from which they were prepared.
While some of the characterization data may replicate the work of Sullivan et al.
[9,10,12,22-24], the nuclear magnetic resonance data (NMR), the low-voltage high-
resolution mass spectrometric (LVHRMS) data, and the test of "fit" to correla-
tions previously developed at PETC for narrow-boiling range coal distillates are
supplemental to and amplify the characterizations performed at Chevron. Further-
more, in-house characterization of the properties of the Great Plains tar oil was
carried out, including NMR and LVHRMS analyses. The tar oil was distilled and
the bottoms were hydrotreated. The overhead and bottoms (before and after hydro-
treatment) were similarly characterized.

Interest in the properties of these materials and of similar materials derived
from tar sands and oil shale culminated in a symposium on the structure of future
Jet fuels presented before the Division of Petroleum Chemistry at the American
Chemical Society Meeting in Denver, April 5-10, 1987. At that symposium,
Sullivan gave a summary report on this investigation related to high-density
fuels from coal [24). It was also at that meeting that Knudson et al. presented
results of their evaluation of jet fuels from tar oil obtained from the Great
Plains Gasification Plant (GPGP) at Beulah, North Dakota [28].

The present report will compare results of analyses and correlations of prop-
erties carried out on samples of high-density fuels from the ITSL process. These
samples were produced at Chevron. MWe will also describe in part those investiga-
tions carried out on GPGP tar oil.

EXPERIMENTAL

Samples that have been characterized at the PETC from the ITSL process include
three wide-boiling-range coal-derived syncrudes and four jet-boiling-range pro-
ducts produced at Chevron. The syncrudes include an Illinois No. 6 coal-derived
oil, and a light and heavy oil derived from Wyodak. The jet-boiling-range
products include hydrotreated Wyodak light and heavy oils, and hydrotreated and
hydrocracked Illinois No. 6 oils. Procedures used for upgrading the syncrudes
have been reported [9-10]. Other samples that have been characterized include
the GPGP tar oil stream, as well as the overhead and bottoms from distillation of
the tar oil and the hydrotreated distillation bottoms of the tar oil; the North
Dakota lignite used to produce the tar was also characterized.

Chemical and physical property measurements were carried out at PETC and at

Huffman Laboratories (Wheatridge, Colorado); and numerous property measurements
were reported by Sullivan [9-10,12,22-24]. Characterizations include simulated
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distillation by gas chromatography (ASTM D2887) for boiling-point-range deter-
mination {29], CHONS elemental analysis [30-32], Karl Fischer determination of
water {33}, molecular weight [32], refractive index {34], specific gravity [32],
viscosity [35], Carbon-13 and proton NMR [36], IR [37], low-resolution mass
spectrometry with an ionizing voltage of 70 eV (ASTM D2789 type analysis was used
to calculate the compound classes), and LVHRMS [38-39]. Detailed results of
these analyses are the subject of an in-house report in preparation [#0]. The
data relevant to this report are summarized in Tables 1 through 6. Additionally,
correlations developed at PETC for narrow-boiling-range coal liquid distillates
[41] were applied to these samples.

The Great Plains Gasification Plant operated by the ANG Coal Gasification Company
for the Department of Energy produces 150 million scf of substitute natural gas
per day [26]. Three by-product hydrocarbon liquid streams -- tar oils, crude
phenols, and naphtha -- are also produced. Of the three liquid streams, the tar
oil stream (produced at the rate of 2900 bbl/day [27]) is thought the most
appropriate for conversion to jet fuel [26]. The tar oil from the GPGP had a
boiling range of 107°C to 524°C. About 20 liters of the tar oil were vacuum
distilled to an atmospheric equivalent cut point of 350°C at the University of
Pittsburgh Applied Research Center. About 66% of the tar oil was found in the
overhead, and 34% in the vacuum bottoms. A 300-g portion of the 3509C+ bottoms
was hydrotreated in a 1-liter batch autoclave at 350°C under 13.6 MPa H;
(3 scf/hr) using a presulfided Shell 324 catalyst for one hour. Five runs were
made and a total of 1500 g of product hydrotreated.

RESULTS AND DISCUSSION

Coal liquids derived from two-stage processes were lower in oxygen and nitrogen,
and for a given boiling range, Sullivan found these liquids easier to upgrade
than products from single-stage processes [14]. The properties of jet-fuel
products, consisting mostly of cyclic hydrocarbons, were virtually the same from
both the single-stage and two-stage processes. For all processes evaluated at
Chevron, the jet-fuel products had high densities and high volumetric energy con-
tents. The Wyodak CTSL light oil [12] was easier to upgrade than the other syn-
crudes, apparently because of its low-boiling-point end point, higher hydrogen
content, and lower heteroatom content [14]. For syncrudes with a high-boiling-
point end point, a successful upgrading procedure was developed that consisted of
a two-step process: (1) hydrotreatment for heteroatom removal and (2) low-
temperature hydrogenation for aromatic saturation [9,13,14].

The hydrotreatment process that produces the jet-boiling-range products from the
coal-derived syncrudes removes hetercatoms, breaks down heavy paraffins into
lighter paraffins, and hydrogenates aromatic rings, creating cyclic aliphatic
functionalities. This is observed in the characterization data. The hydrogen
contents of the hydrotreated products are greater than those of the syncrudes;
and proton NMR, as well as carbon-13 NMR, confirms the predominance of aliphatics
over aromatics in the hydrotreated product versus the predominance of aromatics
in the syncrude. Results from LVHRMS and low-resolution mass spectrometry indi-
cate a larger amount of the desirable lighter cyclic hydrocarbons in the jet-
boiling-range products than in the corresponding syncrudes.

Table 3 compares properties of the four jet-fuel products prepared and charac-
terized by Sullivan {9,10,12], and further characterized and studied here, to
those of a Jet A specification fuel [13] and a high-density fuel [42]. The coal-
derived jet-fuel products meet most of the Jet A and high-density fuel specifi-
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cations. The Illinois ITSL hydrocracked product exceeds the minimum for flash
point, and the distribution of hydrocarbon types does not quite meet the specifi-
cations, although a high concentration of naphthenes is desirable. The four jet-
fuel products do exceed the API gravity specifications, that is, they have higher
densities than the specification fuels. This specification, however, is probably
not necessary for aircraft with modern fuel-flow controllers [14]. There were
previously no jet-fuel products with an API gravity below 37 that have met the
other specifications [13]. The higher densities would probably be an advantage,
since the fuel would have a higher volumetric energy content. These four pro-
ducts otherwise meet most of the jet-fuel specifications and have the desirable
high naphthenic content and thus have potential for serious consideration as
aviation jet fuels.

Franck et al. [43] recently concluded that two- or three-ring cycloparaffins with
molecular weights in the range of 120 to 200 give the best performance in des-
cribing the different properties of jet fuels. Of the compound types that they
studied, these cycloparaffins were the only ones to show simultaneously the fol-
lowing properties [13]:

high heating value by volume

satisfactory heating value by weight

excellent thermal stability

very low freezing point

low volatility, high flash point

acceptable low-temperature viscosity

acceptable flame characteristics (smoke point, ete.)

C00Q0O00QCO0O

"No other hydrocarbons in the jet-boiling-range have all of these prop-
erties [13]." Analyses of the four ITSL Jet-boiling-range products at PETC
(Table 4) confirm that the predominant compounds classes are indeed 1-, 2-, and
3-ring cycloparaffins, and the molecular weights (Table 1) are slightly below
200. Analysis of the Wyodak Light ITSL Syncrude by LVHRMS required 31 compound
types in the range Cs-C2, to account for the sample, while the same analysis of
the Wyodak light ITSL hydrotreated product required only 13 compound types in the
range Ce¢ to C,¢ to account for the sample [41]. Thus, hydrotreating this syn-
crude resulted in a less complex sample. Part of this loss in diversity can be
accounted for by the fact that a certain distillate range was selected for the
product, but in part, the diversity is lower because of heteroatom removal. Con-
ceivably, a processing mode could be developed that would result in a product
consisting of only a few compounds. The GPGP tar o0il and overhead both fall in
the molecular weight range of Jet products, but only the overhead has the right
boiling range. The GPGP overhead, however, has a high heteroatom content (37.81%
Ce-C12 hydroxybenzenes), as measured by LVHRMS (Table 5). The phenolic oxygen in
the tar bottoms is less than half of that in the overhead (Table 2).

The GPGP tar oil, as well as the 350°C overhead and 350°C+ bottoms, is clearly
very different (see Tables 1 and 2) from the coal liquefaction syncrudes
evaluated by Sullivan. The twelve predominant compound types (from LVHRMS) found
in the tar, the distillate overheads, and the bottoms are given in Table 5. The
tar oil contains 33% of Ce-Ci2 hydroxybenzenes, and the overheads contain almost
38%. The bottoms contain no large quantities of any compound types. The dif-
ferences are most obvious in the NMR data (Table 2). Aromatic hydrogen and
aromatic carbon are significantly higher in the GPGP tar oil samples. The weight
percent oxygen as phenols (Table 2) is also higher in the GPGP samples. Surpris-
ingly, the hydrotreated GPGP 350°C+ bottoms have properties very similar to the
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Wyodak heavy ITSL syncrude. Presumably, this material could be further processed
to produce a Jet-fuel fraction that would have properties similar to the jet
fraction produced by hydrotreating the Wyodak heavy ITSL syncrude. Similarly,
the overheads could be hydrotreated to produce a jet-fuel-like distillate
product. However, the oxygen content of the overhead fraction would require
efficient heteroatom removal because oxygen functionalities have been implicated
in problems with stability upon storage.

Correlations developed for narrow-boiling-range coal liquids [41] were success-
fully applied to the GPGP tar oil products as well as to the syncrudes and Jjet-
boiling-range products. The results are reported in Table 6. The Illinois ITSL
hydrocracked product gave the largest error when correlations were used to esti-
mate molecular weight (15.93%) and refractive index (4.26%). An error of 7.8%
resulted from estimation of the molecular weight of the tar oil, and an error of
1.32% resulted from estimation of the refractive index of the Wyodak heavy ITSL
hydrotreated product. It is unclear why the hydrocracked product properties are
difficult to estimate, but if this product is eliminated from the set, the
average error in the estimated molecular weight is 2.37%, and the average error
in the estimated refractive index is 0.49%. Khan recently reported successful
applications of correlations based on refractive index to other liquids produced
by coal pyrolysis [UH4].

Finally, bench-scale experiments conducted by Amoco have provided the basis for a
process plan, established pilot-plant conditions, and produced small amounts of
JP-8, JP-8X, and JP-4 jet fuels from GPGP tar oil [27]. With clay treatment and
antioxidant additives, the JP-U4 product was expected to meet all specifications
except heating value, and the JP-8 and JP-8X were expected to meet all specifi-
cations except flash point. Two barrels of JP-8 jet fuel were Jjointly produced
by Amoco and Lummus for evaluation by the Air Force.

CONCLUSIONS

Jet fuels can be prepared from a wide range of coal liquids produced in single-
stage and two-stage liquefaction processes, as well as from by-product streams of
gasification processes. The high aromaticity of coal, the very property that
makes it an excellent candidate as a feedstock for high-density fuels, exacts a
heavy penalty, however, in hydrogen consumption. The high heteroatom content not
only consumes large amounts of hydrogen to produce mostly NHi, H2S, and H 0, but
the remaining nitrogen tends to poison catalysts, and the nitrogen in jet fuel is
blamed for gum formation. Oxygen compounds have been implicated in oxidative
coupling reactions resulting in degradation of fuels upon storage.

In the future, with the decline in production of high-quality crudes, refiners
will be pressed to process lower quality petroleum crudes. At some point then,
production of Jet fuels from coal will become an attractive and viable
alternative. In the near term, there is still time to perform the requisite
research yet remaining.
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