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INTRODUCTION 
Vicinal alkyl groups attached to benzenoid rings or cycloalkane moieties in a tetralin- 
like configuration are commonly postulated features in structural models of 
bituminous coals [for examples, see [Ill. Formation of cyclic carboxylic acid 
anhydrides (analogous to phthalic anhydride) from mild oxidations of such coals [Z] 
is one item of evidence in  support of this postulate, and it would be expected that 
features from vicinal alkyl species should be readily identifiable if highly resolved 
carbon-13 nmr spectra of coals were to be obtained. This expectation should be readily 
testable since in  polymethylarenes, methyl carbon-13 n m r  shift patterns are observed 
in which ortho-related methyl carbon signals are significantly upfield (up t o  7 ppm) 
from those of isolated methyl groups. These patterns are usually interpreted by 
suggesting that non-bonded repulsion between alkyl hydrogen atoms [3-5] leads to 
steric compression of C-H bonds. Many other carbon-13 "steric shifts" are rationalized 
similarly, with electron migration postulated in the sense 6+ H-C 6- [6,7]. However, 
bond length and angle distortions occur more readily for C-C bonds than for C-H 
bonds (compare v CH, - 3000 cm.-l; v CC, - 1000 cmJ. and6 CH - 1450 cm-1; 6 CC - 
700 cm.-l), so hydrogen-hydrogen repulsions are not likely to be the only significant 
steric factors. Further, the methyl proton shifts in  ortho-xylene are also upfield from 
those in the meta and para isomers [8]. 
PROCEDURESANDDISCUSSION 
I have tested the validity of the steric compression postulate, using Allinger's MM2 
force field approach [9] with the commercial application Chem3D PlusTM [lo] on a 
Macintosh I1 microcomputer. I calculated equilibrium geometries of various 
methylarenes (benzenes, naphthalenes, anthracenes). The steric interactions were 
minimized iteratively, considering contributions from compression-stretching, 
bending, stretch-bend, van der Waals, dipole-dipole, and torsional forces. Ten to  one 
hundred iterations are sufficient to reach self-consistent minima. Calculations for 
ten distinct environments for methyl groups suggest (see 'IBble 1) that the major 
variations in geometry minimizing non-bonded repulsions are bond extensions of the 
aryl C - alkyl C bonds, and appropriate angular changes. 
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Bond length and angle distortions occur more readily for C-C bonds than for C-H 
bonds, consistent with the appropriate force constants. 
The methyl carbon-13 shifts are linearly correlated with aryl C - alkyl C bond lengths: 
shift incteases as bond length decreases (Figure 1). The hybridization of the alkyl 
carbons is unchanged; one-bond carbon-13 - proton coupling constants are within 0.5 
Hz of 125 Hz. 
I interpret these results as decreased hyperconjugative interactions between the 
methyl groups and the attached aromatic species with increasing aryl C - alkyl C 
bond length, and as  a direct consequence, decreased C-methyl carbon-13 shifts. In 
this series of compounds, there is steric extension of carbon-carbon bond lengths to 
avoid the hydrogen-hydrogen repulsions in  the steric compression model proposed by 
Grant and coworkers. 
This is  not to  discount the possible significance of non-bonded hydrogen-hydrogen 
repulsion effects under appropriate circumstances. In  the polycyclic aromatic 
phenanthrene a similar MM2 treatment may be applied to deduce the preferred 
geometry. In this species, the two hydrogens of the C-H bonds in a bay environment 
are shortened significantly, but the major predicted changes are systematic 
deformations of the entire ring geometry and bending of the bay C-H bonds with 
increased angles. The predicted C-C bond lengths in the phenanthrene skeleton show 
excellent correlations with those observed from neutron diffraction measurements 
(see Figure 2). 
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Table 1 
Carbon-13 shifts for methyl groups in methylarenes 

Compound Shift, ppm MM2 bond length, nm 
-__--_____-_----_-------- 
Toluene 21.3 
o-Xylene 19.6 
9-Methylanthracene 13.7 
9,1O-Dimethylanthracene14.1 
1,2,3-tnmethylbenzene 15.2 (2) 
1-Methylnaphthalene 19.1 
1 -Methylanthracene 19.7 
2-Methylnaphthalene 21.4 
1,2,3,5-tetramethylbenzene 14.6(2) 

20.9(5) 

, - - - - - - - - - - - - 
0.1509 
0.1511 
0.1516 
0.1517 
0.1514 
0.1511 
0.1512 
0.1509 
0.1515 
0.1508 
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Figure 2 
MM2 correlation with phenanthrene 
bond distances from neutron diffraction 0 
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