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INTRODUCTION

The process to reduce NOx by NH3 was patented by Lyon (1975). The process initially
found limited use to control NOx in oil- and gas-fired boilers in Japan. The process was
experimentally investigated by Muzio, et al. (1976) and Lyon (1978). Typically the NOx
reduction cited in small scale studies or practical application was 40-70 percent. Recently,
NH3 injection systems have been installed on a number of incinerators and fluid bed
combustors. The measured emission of NOx from some of these operating ccmbustors is
below 10 ppm (d, 3% 02). These results implied that better reduction could be achieved
than had been thought based on previous small scale resuits and from field trials.

This paper describes experiments and calculations aimed at establishing the maximum NOx
reduction that can be achieved in the absence of mixing limitations and to determine how
gas composition, operating parameters, and additives affect the reduction of NOx and the
slip of NH3.

EXPERIMENTS

Experiments were designed to be controllable, free of mixing constraints and catalytic
influence, and capable of investigating the range of operation of commercial systems.

The experimental apparatus, Figure 1., delivers gas from analyzed bottles, mixes and
meters the flow through rotometers, adds water vapor as desired from a saturated bath,

and passes the gases through a quartz coil reactor in a temperature controlled oven. The
bottled gases are mixed to represent the range of flue gases to be treated or the gases after
treatment. The gases are analyzed before and after the oven using continuous monitors for
NO, NO2, 02, CO, and CO2 and an ion specific electrode for NH3 concentration.

The conditions investigated were ( baseline conditions are underlined):
o residence time: 0.1, 0.2. 0.5, 1.0 seconds
o temperature: 1061,1116,1144,1172,1200, 1228, 1255, 1283, and 1311 K

o NO: 100, 200, 300, 400, 600, 800 ppm
o CO: Q, 100,200,400, 600, 700 ppm
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o0H20:0,6 %

0CO2:15%

002:3%

O NH3/NO: 1,1.5,20, 3.0,40

Calculations were used to interpret and extent the resuits of the experimental. Calculation
were made using the Sandia National Laboratories SENKIN and the extended mechanism of
Miller and Bowman (1989). Selected results from the calculations were fit with mathematical
expressions. These expressions allow the data to be easily interpolated and possibly to be
extended slightly.

RESULTS

The influence of the above conditions on NOx reduction and NH3 slip were determined by
experiment and calculations and were compared with previous experimental data. The
following conclusions were derived from the range of conditions studied.

Residence Time

Longer residence times generally resulted in slightly increased reduction of NOx and less
NH3 slip. However, shorter residence time, occasionally produced slightly greater NOx
reductions and the maximum NOx reduction occurs at lower temperatures for shorter
residence times.

Temperature

We find an optimum temperature for the reduction of NOx in the range of 1175- 1225 K and
the minimum temperature for nearly complete destruction of NH3 to be greater than 1300 K
as shown in Figure 2. and in agreement with other literature values. However, our
experimental results show much higher reduction of NOx and much greater NH3 slip
compared with the measurements of Muzio, et al. (1976). Our results agree with those
reported by Lyon (1979) and calculations made using the unaltered Miller and Bowman
Mechanism. The differences between our results and those of Muzio, et al. (1976) may
resuit from their injection of aqueous NH4OH solutions instead of gaseous NH3, mixing
limitations in their pilot scale combustor compared to our plug flow reactor, temperature
gradients in their reactor compared to our constant temperature reactor, and their use ot 100
ppm NO compared to our use of 400 ppm.

H20

The influence of H20 in the range of 0-6 percent was found to be small on NOx reduction
and NH3 slip.

CcO
Increased concentrations of CO were found to reduce the NOx reduction and create a peak
in the NH3 slip as shown in Figure 3. Our results show that increasing CO concentration

from O to 700 ppm causes a relative small decrease in NOx reduction, where as the results
of Teixeira et al. (1991) show a large increase. Conversely, our results show that increasing
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the CO concentration from 0 to 100 ppm can result in a four fold increase in NH3 slip: higher
concentrations of CO reduce the NH3 slip until the slip reaches a low leve!l at 600 ppm CO.
The results of Teixeira et al. show low NH3 slips at all levels of CO. Again, our experimental
results agree with calculations obtained from the unaltered Miller and Bowman Mechanism
and the difference between our results and those of Teixeira et al. may result from the
difference in experimental conditions particularly any imperfect mixing in their experiment.

NO

The fractional NO reduction decreases with decreased levels of initial level of NO
concentration below 400 ppm as shown in Figure 4. Conversely, the level of NH3 slip
increases with increased level of initial NO concentration. The influence of initial NO
concentration on NO reduction and NH3 slip agrees with the results of Muzio, et al. (1976)
and the results from calculation based on the Miller and Bowman Mechanism.

NH3/NO

The level of NO reduction increases as the NH3/NO level increases to 1.7 as shown in
Figure 5. The amount of NH3 slip increases at NH3/NO ratios greater than 1.0 to 1.5. The
results of our experiments agree with those of Teixeira, et al. (1931) and results of
calculations made using the Miller and Bowman Mechanism.

Additives

Caiculations on the effect of H2, H202, and CH4 additives injected after the NH3 injection
zone were done to determine the effects of these additives on NOx reduction and NH3 slip.
The results of these calculations shown in Figure 6. are based on the effluent from the NH3
reaction zone with a concentration of 8 ppm NO and 81 ppm NH3. The NO reductions
reported in Figure 6. is based on the fractional reduction from an original NO concentration
of 400 ppm. Therefore, values greater than 0.02 indicate production of NO after the reaction
zone. At the temperatures required to reduce NH3 to 5 ppm, injection of H2 and H202 both
result in increases in NO concentration.

Calculations predict injection of CH4 at a temperature 100 K below the NH3 injection
temperature of 1200 K has little effect on NOx emission while reducing the NH3 slip to
about 5 ppm. Figure 7. experimentally confirms that CH4 can reduce NH3 slip, although not
to the levels predicted by the caiculations.
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