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INTRODUCTION 
A number of elements and their compunds commonly found in coal are identified by the 
Clean Air Act (CAA) of 1990 as among 189 hazardous air pollutants (HAPS). These 
elements include: antimony, arsenic, beryllium, cadmium, chromium, cobalt, lad, manganese, 
mercury, nickel, and selenium. In addition to these spxific elements, radionuclides are also 
listed as HAPS, these too are known to occur naturally in some coals. Finally, tluorine, in 
the form of hydrofluoric acid, is listed. The CAA mandates a study of utility air emissions. 
This study, to be performed by the United States Environmental Proteaion Agency (EPA), 
is expected to be presented to Congress by November 1995. In addition, EPA is required 
by law to perform a health risk assessment and to recommend new air toxic regulations, if 
necessary, to protect human health. Furthermore, the legislation requires separate studies of 
mercury emissions, deposition, and health eEects. In order to make estimates of power plant 
HAP emissions, EPA requires information on the HAP concentrations in as-fired coal (Le., 
as b u m d  by utilities). 

PUBLIC SOURCES OF COAL TRACE ELEMENT DATA 
Starting in 1973 and continuing through the present, the United States Geological Survcy 
(USGS) has collected and analyzed thousands of channel and core samples of coal for various 
quality parameters. The measurement of trace element content was part of this gcochcmical 
study. Channel and core samples are sometimes taken of the entire height of a coal seam, 
including interbedded rock and minerals (partings). In such cases, they represent in-place 
coal, which is similar to as-mined coal without the roof or floor rock sometimes extracted 
along with the coal during mining (out-of-seam dilution). USGS sampling protocol is to 
m a t  partings under ten centimeters thick as part of the coal seam, while those greater than 
ten centimeters thick are sampled separately unless they are normally extracted with the coal 
during mining. Partings are sometimes removed separately in surface mining, but in 
underground mining, they are always extracted with the coal. Therefore, USGS samples 
taken in underground mines normally repnsent in-place coal, while those taken from surface 
mines may or may not represent in-place coal. 

Currently, no comprehensive trace element database is available to government and industry 
other than the database developed by the USGS. EPA is constrained by the absence of other 
comprehensive data sou~ces and may use the USGS database for the emissions estimates 
necessary to perform the health risk asxssments required by the Clean Air Act Amendments 
even though the available analyses are for in-place coal and not ?-fired coal. Tnis is a 
concern because, as shown in Table 1, about 77 percent of eastern and midwestern as-mind 
coal is cleaned before it is burned. In some cases, the primary effect of coal cleaning is to 
remove out-of-seam dilution; however, partings may also be removed during cleaning along 
with fracture filling mineral matter. Recent studies have demonstrated that coal cleaning can 
also reduce the concentration of most trace elements (Akers and Dospy, 1993 and DcVito 
et al., 1993). Since the coal samples in the USGS represent as-mined or in-place coal, the 
trace clement data in the USGS database on many of the eastern and midwestem coals will 
be higher than as-fired data because most of these coals are cleaned before combustion. 
Health risk assessments based on the existing USGS coal database will, therefore, tend to 
overestimate the risk of burning eastern and midwestem coal. 

THE CURRENT PROJECT 
CQ Inc., under funding by the Electric Power Research Institute, developed an approach that 
can be used to make coal samples in the USGS database more representative of as-fired rather 
than in-place coal. This paper presents a description of this approach, which involved the 
dcvelopmcnt of regression equations and algorithms for each of 11 trace elements. These 
yuations and algorithms are used to predict the amount of a trace element in as-fired coal 
given the trace clement analyses of channel and core samples in the USGS database. The 
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P F r  also presents discussion of the accuracy of the projections and provides an example of 
how the algorithms are being used. 

The final part of this projcct, currently in progress, is to select those coals in the USGS 
database that cxcccd the typical as-fircd ash content for the scam and county in which they 
Were mined. For each USGS sample that exceeds the typical ash content, the appropriate 
algorithm wi~ be applied to predict the trace clement concentration of the core or channel 
Sample assuming the coal had bccn cleaned to the typical ash content. At the conclusion of 
the project, a modified version of the USGS database will bc available for estimating p w e r  
plant emissions of HAPS. 

MATHEMATICAL MODELING AND REGRESSION ANALYSES 
Mathematical quations can often be developed to describe the relationships bctwccn input 
and output parameters of a system. In some cases, equations that arc derived from 
theoretical or generally accepted cause-and-effect relationships can be uscd for modeling 
reactions to changes in measurable parameters. This is sometimes referred to as mechanistic 
or fundamental modeling. However, when theoretical knowledge about the relationships 
bctwccn inputs and outputs of a system is lacking, empirically-derived equations may still bc 
developed to describe variable relations in a system. 

A common method of empirical modeling is statistical correlation. Correlation, which 
involves the development of equations to results to system effects, can be used to 
analyzc process data, describe its tendencies, and evaluate the intensity of associations among 
process parameters, A disadvantage with this modeling method is that the existence of a 
correlation docs not mean that the system outputs are necessarily causally related to the input 
variables used to build the model. A measure of high correlation indicates only that the 
random variation of the data can be mathematically explained and that a specific tendency or 
behavior within the data is identified. However, when used correctly, statistical correlation 
can be an effective and reliable modeling method. 

The primary operation involved in statistical correlation is regression analysis. Rcgrcssion 
involves fitting linear or nonlinear mathematical equations to data sets in order to d&bc 
changes in dependent variables resulting from changcs in independent parameters. In the 
case of linear regression, this is typically referred to as "least-squares" l i e  fitting. In addition, 
regression is sometimes completed in stages to climinate variables that ace found to be 
mathematically and statistically unimportant; this is known as step-wisc regression. 

In order to develop quations that can predict the content of selected trace elements in clean 
coal after commercial-scale conventional coal cleaning, regression analyses were performed 
to relate various raw coal quality parameters and cleaning performance data to the trace 
element reduction. The data used for this work was collcctcd from several sources: CQ Inc. 
has a database that indudcs ten commercial-scale coal cleaning tests; Consolidation Coal 
Company (CONSOL) has published information on trace element reductions in eight 
commercial cleaning plants (DcVito et al., 1993); and Bituminous Coal R&h (BCR) has 
published trace clement data for six commercial plants (Ford and Price, 1982). Finally, 
Southern Company Services, Inc. (SCS) gathered data on two commercial-scale cleaning tests 
during a projcct funded by DOE and EPRI. The final report for the SCS work has bccn 
prepared and supplied to EPA by DOE. Altogether, trace clement removal data from 26 
commercial-scale cleaning tats using coal mined east of the Mississippi River were located. 
Sufficient information was located to allow development of equations for the following 
elements: arsenic, beryllium, cadmium, chromium, cobalt, fluorine, lead, manganese, mercury, 
nickel, and selenium. 

Multi-parameter, backward elimination regression analyses and statistical analysis of variance 
were conducted to develop equation models for each of 11 trace elements. For each system, 
trace element reductions from the commercial-scale coal cleaning tests and their rcspcaivc 
raw coal quality parameters and coal cleaning performance results were gathered and stored 
into a database file. Various mathematical transformations (square root, logarithmic, and 
negative inverse) of the original data were also generated and included within this file. 
Regression of data transformations provided a means to ensure that both linear and non- 
linear correlation possibilities were examined. Thsc data sets were then input to Minitab", 
a computer software statistics package, for backward elimination regression. Information and 
output from Minitab includes statistics on summary of tit (the applicability and hardiness of 
the equation to describe the variances in the data), analysis of variance, and parameter 
estimates. All of the equations developed contained ash reduction as a major predictive 
parameter. Three of the quations also induded a total sulfur reduction predictor, while 
several equations included one or more raw coal analyses in addition to ash reduction. 
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DATA SCAITER AND MODELING ACCURACY 
The primary method used to evaluate regression equation accuracy was to evaluate thc 
comparative fit of measurcd trace element reductions vcrsus calculated trace element 
rcductions. An example of this method of accuracy chcck is shown in the figurc. In thcsc 
types of graphs, the dotted line represents an cxact correlation between the mcasured and 
predicted reductions. That is, if data appear on this line, the equation produced cxactly the 
same value that was measurcd for a pamcular coal cleaning test. Similarly, values that plot 
away from this line indicate that the equation predicted trace element values grcatcr than or 
less than the actual mcasured values. Thercfore, equation accuracy can be determined by the 
distancc individual values are away from this line. In this example, the graphic suggests that 
the equation developed for fluorine is accuratc, though some pointF are a significant distance 
from the line. Some portion of this data scatter is likely caused by sampling or analytical 
error, but other explanations must also be considered. 

Lack of fit may also be caused by differences in the mode of occurrence of these trace 
elements in raw coal and differences of response to a variety of coal cleaning operations. The 
mode of occurrence of an elcmcnt is the physical form and location in which the element is 
found within a raw coal. In gencral, trace elements can be found within either the organic 
portion of a coal or within the mineral matter that is associated with a raw coal. When trace 
elements are associated with mineral matter or exist as discrete mineral particles, physical coal 
cleaning methods can be used to removc much of the mineral matter and trace elemcnts from 
a raw coal. For example, mercury has been reported to occur in coal in a variety of modes: 
it can be found in pyrite, in epigenetic pyrite, and in sulfides other than pyrite as well as 
organically bound within coal (Finkelman, 1980). Any organically-bound mercury that may 
occur in coal cannot be removed by physical coal cleaning technologies, while epigenetic 
pyrite is often coarse grained and readily removable. Thus, if mercury is organically-bound, 
concentrations will increase with cleaning; if it is contained in coarse-grained mineral matter, 
it will be reduced by cleaning with quantities dependent upon the cleaning devices employed, 
method of operation, and coal characteristics, 

Local geologic cnvironment during and after coal formation can also affect the mode of 
occurrence of a trace element. As a result, mode of occurrence may vary between coal basins 
or even within a single basin. Because trace element mode of occurrence may vary with 
location, it is reasonable to expect such a change to be reflected in the geographic location 
of the coal samples used. An indication of possible impacts based on geographic location is 
shown in the fluorine data. The figure shows that for the Pennsylvania coals, measured 
fluorine reductions are always equal to or lower than their corresponding predicted values. 
For the Alabama coal samples, this situation is reversed-measured fluorine reductions are 
always equal to or higher than the predictcd values. This indicates that the mode of 
occurrence of fluorine in Pennsylvania coals may inhibit the effectiveness of coal cleaning to  
remove this trace clement. Conversely, the mode of occurrencc of fluorine in Alabama coals 
may help make its removal easier. Unfortunately, when the data used' in this study wcrc 
grouped by state of origin or  by coal basin, the number of commercial-scale tests k a m e  too 
small to allow a statistical asScSSment of the impact of geographic location. 

The level of trace element reduction obtained during coal cleaning can also be affected by the 
different techniques and technologies utilizcd to remove ash-forming and sulfur-bearing 
minerals. However, as with location differences, this could not be adequately addressed in 
this study because of insufficient data. To illustrate this point, consider that most of the 
known mincral forms of mercury in coal are sulfides, which are typically dense, finely-sized 
minerals. When liberated from raw coal by crushing or grinding, sulfides can be easily 
removed by cleaning devices that depend on the differences in density between coal and 
mineral matter-this is the most common method of coal cleaning. Examples of density- 
based cleaning devices, which have a wide range of applicability and varying degrees of coal- 
mineral matter separation performance, include hcavy-media cyclones and baths, jigs, and 
concentrating spirals. Other devices such as froth flotation or agglomeration units clean coal 
based on the differences in surface properties between the coal and mineral matter. The 
surface characteristics of many sulfides and coal are sometimes very similar, though, which 
makes sulfide removal using surface-based mcthods difficult at times. 

AS-FIRED COAL QUALITY DATA 
In order to usc the regression equations to adjust the USGS channel or core sample data to 
an as-fired basis, it is first necessary to estimate the ash and sulfur content of a target clean 
coal. The quality of clean coal produced from coal cleaning plants is primarily driven by raw 
coal characteristics and market price and specifications. Because raw coal charactcristics vary 
by region and seam and because utility fuel quality demands can vary from region to region, 
a wide spectrum of clean coal qualities are produced for the utility market. In order to 
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develop clean cod q d t y  targets that are applicable to spccific sampl~s in the USGS 
database, both raw coal characteristics and local market specifications must be examined. 

Within a very limited geographjcal area (e.g., a county), the characteristics of an individual 
Cod seam are reasonably uniform. In addition, most of the clean coal that is producd from 
a Pmcular seam in this limited region is of similar quality, especially if much of the coal 
produced in the bcdizcd region is competing for fuel sales to the same electrical generating 
station. Thus, clean coal qd i ty  targets used in algorithms that adjust USGS as-mined or in- 
place coal quality data to typical as-tired quality levels must be developed for each individual 
seam in a given county where active mining is occurring. Several public databases and other 
published sources can be used in gathering the specific information needed to relate regional 
Coal production and individual coal scam information. 

SAMPLE ALGORITHM CALCULATION 
To apply the algorithms developed during thk project, the following information is necessary: 

Target clean coal quality. 

The sample calculation presented below illustrates the procedures for determining the 
expcaed nickel concentration in the cleaned Sewickley Seam coal from Pennsylvania. 

SAMPLE DATA 

Initial sample data (raw coal quality data or USGS channel or core data). 

The calculated ash, and in some cases sulfur, reduction between the initial sample and 
the target quality. 
The results of applying the regression equations. 
The results of the trace element concentration calculation. 

Raw Ash = 32.9%; Raw Heating Value = 9,804 Btu/lb; Row Nickel = 23.5 ppm 

TARGET CLEAN COAL QUALITY (Assumed) 
Typical As-fired Sewickley Seam Cool, Greene County, PA 
Ash = 12.0% and Heoting Value = 13,300 Biu/lb 

REDUCTION CALCULATION 
Ash reduction is calculated by the following equation: 

Ash Reduction : 

Row Cool Ash Content . Cleon Cool Ash Content 

Row C w l  Ash Content 
Row Cool Heating Value 

Row Cool Heating Value Clean Cool Heating Value 
Row Cool Ash Content . Cleon Cool Ash Content 

Row C w l  Ash Content 
Row Cool Heating Value 

Row Cool Heating Value Clean Cool Heating Value I 1 0 0  

32.9 12.0 

Ash Reduction : 9'804 13'300 I 100 : 73.11% 
32.9 
9,804 

APPLICATION OF THE REGRESSION EQUATIONS 

- -  
- 

In this example, the equaiion for nickel reduction is  used: 

1 55.23% 1 Nickel Reduction : - i .  

[- 0.0867 I (0.0368 I tog psh Reduction))] [- 0.0867 4 (0.0368 I Log (73.1 1))I 

TRACE ELEMENT CONCENTRATION CALCULATION 
Once the calculated nickel reduction is determined, the next step is to determine the clean coal nickel 
concentration using available raw coal data for heating value and nickel concentration and the target 
clean cool heating value. 

Row Coal Nickel Content . Clean Cool Nickel Content 
~ickel Reduction Row Cool Heoting Value Clean Coal Heating Volue , 00 

Row Coal Nickel Content 
Row Cool Heoting Volue 

23.5 . Clem Cool Nickel Content 

23.5 
9,804 

- 
1 loo 13,300 55.13 8 9*804 

- 

Clem coal Nickel Content .I(?.? I 23.5) . (23.511 I 13,300 I 14.27 ppm 
100 9,804 9,804 



Table 2 shows the results of applying this algorithm to adjust the trace clement concentration 
of raw Scwicklcy Scam coal to an as-fired yuality using each of the equations dcvclopcd for 
the 11 trace elements. The table also provides a measure of the accuracy of this approach, 
with diffcrcnccs in predicted vcrssus a d  concentrations averaging about 20 percent. 

SUMMARY 
In order to make more rcprcscntativc estimates of power plant HAP emissions and to 
perform the hcalth risk asscssmcnts required by the Clean Air Act Amendments, EPA 
requires information on the HAP concentrations in as-fired coal (i.e., as burned by utilities). 
Currently, the USGS coal database is the only comprehensive source for information on the 
trace clement concentration of coals that is openly available to EPA. Unfortunately, USGS 
samplcs taken from many eastern and midwestern underground and surface mines represent 
in-place or as-mined coal, but not as-fired coal, which is often deancd before it is burned. 
To addrcss th is  problem, equations and algorithms were developed to convert trace clement 
analyses in the USGS database from an in-place to an as-fired basis. This work has provided 
one means for modifying the USGS database so that it can bc used to estimate power plant 
emissions of HAPS. The study also provides a tool to estimate the impacts of using 
conventional or advanccd coal dcaning tcchniyucs to rcducc the concentration of mace 
elements in coals burned by utilities. 
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Table 1. Extent of Coal Cleaning by %ate. Includes metallurgical, sfearn, and industrial coal. 

State 

Illinois 
Indiana 
Kentucky 
hblyland 
Ohio 
Pennwlwnia 
Tennessae 
Virginia 
West Virginia 
TotolfAvemge 

Al.bamo 
€slimmed Raw Coal Mined 

[Million TansfYear) 
37.7 
83.7 
49.5 

215.6 
4.9 

46.7 
90.2 

7.0 
62.0 

821.0 
223.6 

Estimated Tannage Cleaned 
(wl %I 

77 
93 
93 
65 
92 
81 
73 
38 
81 
81 
77 
- 

h r m :  Cml Preprotion and Solids Division, US. Depdmenl of Energy, Pinsburgh Energy Technology Canter, Piltsburgh, PA 15236. 

Table 2. Results of on Application of Algorithms on Raw Sewickley Seam Cool 

Tmce 
Element 
k 
Be 
cd 
Cr 
t o  
F 
Pb 
Mn 

Ni 
se 
MI 

Actual 
Raw Coal Conc. 

E% 
1.07 
0.21 

44.00 
0.74 

226.0 
88.80 

206.00 
0.18 

23.50 
3.61 

AClUOl 

Clean Coal Conc. 

9.20 
0.98 
0.10 

23.60 
4.11 

97.90 
5.15 

73.00 
0.18 

w 

11.20 
2.85 

Predicled 
Clean Coal Conc 

E 
1.21 
0.12 

29.49 
5.66 

1 14.42 
45.54 
73.19 
0.16 

15.26 
2.81 

Absolute 
% Difference 

Predicted vs. Actual 
9.1 

19.0 
16.7 
20.0 
27.4 
14.4 
88.7 
0.3 

12.5 
26.6 

1.4 

Estimation of Algorithm Accuracy. Fluorine. 

,..'.* 

n 
0 

A 

*' 

Measured Fluorine Reduction, Etu Basis ("A) 

' - 90 

80 

- 70 

- 60 
- 50 

- 40 

- 30 

20 

10 

0 .  - 

- 
- 
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