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IRTRODUCTION AND BACKGROUND

Responding to recent technological advances and renewed environmental concerns
requires improved characterization of Illinois and other US coals. Much of the
exlsting trace element data on Illinois coals ars on channel samples; these data
need to be supplemented with data on as-shipped coals. Such data will provide
a factual basis for the assessment of noxious emissions at coal-fired electric
power plants.

The Clean Alr Act of 1990 [Public Law 101-549, 1990) identified many trace
elements as "Hazardous Alr Pollutants" (HAP) (Table 1). A parallel regulation
is also underway in Illinois [Illinois Pollution Control Board, 1990). All of
these HAP elements are present in Illinois and other coals [Gluskoter et al.,
1977; Harvey et al., 1983] in widely varying amounts. Utilities are presently
exempt from having to consider emissions of trace elements; however, this may
eventually change after the U.S. EPA completes its risk analyses and establishes
emission standards. A database of trace element concentrations in the coals used
by utilities is a prerequisite to defining the problem and establishing workable
regulations.

Human sources constitute significant portions of the total global input of most
trace elements into the atmosphere (Fig. 1). Emissions of trace elements from
coal-fired power plants vary widely among countries and regions, reflecting
varying trace element concentrations in coals from different sources. Among
human sources, energy production (electrical utilities and industrial/domsstic
sector) ls estimated to account for major portions of atmospheric emissions of
Hg, Ni, Se, Sn, and V and lesser, but still significant, portions of As, Cd, Cr,
Cu, Mn, and Sb. O0il combustion contributes larger portions of Ni, Sn, and V
emissions than does coal combustion [Nriagu and Pacyna, 1988; Clarke and Sloss,
1992].

During combustion, trace elements in feed coals are partitioned among gas (flue
gas), light particulate (fly ash), and slag/ash phases (Fig. 2). Typlcally, Hg,
Br, Cl, F, and Rn end up in the flue gas; As, Cd, Ga, Ge, Pb, Sb, 8n, Te, Tl, and
Zn in fly ash; and Eu, Hf, La, Mn, Rb, Sc, Sm, Th, and 2r in slag/ash deposits.
others show mixed affinities.

Swaine [1989) reviewed the environmental aspects of trace elements in coal. With
respect to combustion, modern electrostatic precipitators can trap up to 99% of
the fly ash. Swaine concluded that, in general, no trace element posed a
significant environmental problem. This assumes that state-of-the-art
electrostatic precipitators are used at the power plants and that the coals
burned do not have exceptionally high concentrations of noxious elements that
would be emitted in a gas phase. Desp physical cleaning of raw coal would reduce
the lsvels of those elements that are assoclated with minerals [Capes et al.,
1974; Gluskoter et al., 1977; Cavallaro et al., 1978; Norton and Markuszewski,
1989].

The purpose of this study was to determine trace element concentrations in as—
shipped coals from Illinois mines, and compare the results with data on channel
samples that represent coal in place prior to mining. Samples of 34 as-shipped
samples were collected and analyzed for trace, minor and major elements,
including the 18 HAP elements and others identified to be of greatest
environmental concern by the U.S. National Committes for Geochemistry [1980].
Results on 20 of these elementes of environmental concern are reported and
discussed here. Radioactivity of the ae-shipped coal samples was calculated from
concentrations of U, Th, and K in the samples. Future work will concentrate on
evaluating the further beneficiation of the as-shipped coal samples by fine coal
cleaning.

EBIPERIMENTAL

Samples and Sample Regions

Cleaned (as-shipped) samples of Illinois coals were collected from each of 33
preparation plants and from a mine that sells its coal aftsr crushing. In most
cases, the samples were splits from automatic samplers. Multiple cuts were taken
across the coarse output belt over a period of 4 or more hours (commonly 8 to 24
hours) to obtain a representative sample. In some cases, the sample was
collected from a stock pile, taking 15 to 20 widely spaced increments with a
sampling shovel. All samples wsre sealed in 5 mil plastic bags or in § gallon
plastic buckets and transported or mailed to our laboratory within two days.
Within a week, the samples were homogenized riffled, crushed, and packaged at our
sample preparation laboratory, according to the procedure described in Figure 3.

To maintain confidentiality of the results with respect to individual mines, the
Illinois coal field was divided into five multi-county regions (Fig. 4); only the
regions from which the samples came from were identified.

Analyses for Trace Elements

Each of the 34 samples was analyzed for trace, minor, and major elements. These
elements, their method of analysis, and the precision and accuracy of the methods
are shown in Table 2.

RESULTS AND DISCUSSION
Trace Blement Database
Our computerized database contains tracs element information on 900 samples
(Table 3). Figure 5 identifies the 60 elements for which concentrations are
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available on many samples in the database. The most useful records are from the
222 channel or equivalent samples which represent coal in-place prior to mining
and cleaning. Table 4 and Figure 6 give the averages and variabilities for 20
critical environmental elements for channel samples from Illinois.

Trace Elements and Radiocactivity in 34 As-shipped Samples

The concentrations of most of the environmentally critical trace elements in the
34 as-shipped coals {Table 4) vary less widely than those in the channel samples
(compare Figs. 6 and 7). Comparison of the data from channel samples and from
cleaned coals indicates that conventional coal cleaning can reduce the state-wide
mean concentrations of trace elements in channel samples up to 67% (Fig. 8),
except for y (12% enrichment). The reduction in elemental concentrations results
from the reduction of mineral matter and some leaching by the procese water. The
enrichment of U in the as-shipped samples relative to channel samples suggests
that this element is primarily associated with the organic material. Harvey et.
al [1983], who calculated organic affinitiee from washability teste for Illinois
coale, also concluded that U had organic affinity. However, even if U were
largely associated with the organic matter, it would likely be located in very
fine mineral grains disseminated within the organic matter (Pinkelman, 1981;
Clarke and Sloss, 1992).

It should be pointed out that, for a given mine, channel samples do not
neceesarily represent those portions of the seam where feed coals for as-shipped
samples were mined. Therefore, the average trende of trace element reductions
observed in Figure 8 may not hold for individual mines, as Figure 9 indicates.
Zinc enrichment shown in Figure 9 suggests that the channel samples had been
preferentially taken from low-Zn parts of the seam in a mine from the NW coal
region. Zinc is concentrated in structurally disturbed zonee of the seam which
are mined but were not channel-sampled.

Because the channel samples were analyzed for fluorine (F) by an old technique,
which tends to underestimate F in many coal samples [Wong et al, 1992), the F
data from the channel samples and from as-shipped coals cannot be compared to
evaluate the fate of F during coal preparation. At present, F analysis is
carried out according to Australian hydropyrolytic procedure standard
AS1038.10.4-1989.

The natural radiocactivity of coal, which is derived from the decay of Th-232,
U-238 and U-235, and K-40, can be calculated from the observed masses (welghts)
of U, Th, and K [Cahill, ISGS, personal communication]. The calculated
radioactivity data for coals agres with observed radioactive meagsursments [(Coles
et al,, 1978). Table 5 shows that for cleaned Illinois coals, the contribution
to radiocactivity from U and Th is relatively small compared to that from K, which
contributes to background radioactivity not only in coal but in all natural
environments.

SUMMARY AND CONCLUSIONS

A database on trace elements in channel samples of Illinois coals was used to
show the degree of reduction of key environmental elements in 34 as-shipped coals
from Illinois mines collected and analyzed for this study. The results indicate
that the state~wide mean concentrations of all tested trace elements, except U,
are reduced in the cleaned coals relative to those in the channel samples that
represent coal in place prior to mining. Because elemental concentrations in
coal vary widely from place to place and coal to cocal, only mean concentrations
from a large number of channel and as-ehipped samplee should be compared. Better
yet, washability studies on individual samples should be done to assess the
degree and limit of the removal of trace elements from coal during coal
preparation.
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Table 1. Rlements analyzed in project samples

Trace and Microprobe

Elements regulated*

and analyzed Other elements analyzed
Antimony Aluminum
Arssnic Boron
Beryllium Calcium
Cadmium Carbon
Chlorine Copper
Chremium Hydrogen
Cobalt Iron
Pluorine Lithium
Lead Molybdenum
Manganese Nitrogen
Mercury Ooxygen
Nickel Phosphorus
Polonium # Potassium
Radium # Silicon
Radon # Sodium
Selenium Sulfur
Thorium Titanium
Uranium Vanadium
Zinc

* Regulated by Public Law 101-549, 1990
# Radiocactive isotopes of these elements were calculated
from the analytical concentrations of Th and U.

Table 2. Relative precision and methods for minor and trace elements

Relative Average
Precision detection Method*
Element Hmit WDXRF  AAS INAA OEP EDX  PyrolIC
MINOR oxides
Al1,0, ash 3 0.1 & X
Ca0 ash 3 0.02 & X
Fe,0y ash 3 0.01 & X
Mg0 ash 5 0.1 & X
MnO ash 5 0.01 & X
Mno coal 7 3 ppm X
P,0s ash 5 0.02 & X
K0 ash 2 0.01 % X
s10, ash 1 0.1 & X
Na,0 ash 5 0.05 % X
Tio, ash 3 0.01 & X
TRACE elements
As coal 7 1 ppm X
B ash 15 10 ppm X
Be ash 5 0.5 ppm X
cd ash 10 2.5 ppm X
Co coal 5 0.3 ppm X
Cr coal 10 7 ppm X
Cu ash 5 2.5 ppm X
F coal 10 20 ppm X
Hg coal 15 0.01 ppm ) Sl
L ash 12 5 ppm X
Mo ash 25 10 ppm X
Mo ash 25 10 ppm X
Mo coal 20 10 ppm X
Ni ash 10 15 ppm X
Pb ash 20 25 ppm X
Pb ash 20 10 pPpm X
Sb coal 10 0.2 ppm X
Se coal 10 ppm X
Th coal 5 0.4 ppm X
u coal 15 3 ppm X
v ash 3 8 ppm X
In ash 7 1.5 ppm X
* WDXRF - wave length-dispersive x-ray fluorescence spectrometry
AAS - atomic absorption spectrometry
INAA - instrumental neutron activation analysis

OEP - optical emission (photographic) spectrometry
PyrolIC- pyrohydrolysis and ion chromotography
** Hg by cold vapor atomic absorption spectrometry
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Figure 4. sample regions of Illinois coal field.
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Figure 5. Rnalytical results on these 60 olements (shaded) are available for
many sample-records in the ISGS database of trace elements in coal.
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Cd and Pb was not sufficient to compute the reduction for these two elements.

536

P



