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INTRODUCTION 

Data from computer controlled scanning electron microscopy (CCSEM) are typically 
interpreted by grouping particles into bins based on their elemental compositions. Some of the 
bins correspond to well-defined mineralogical species or phases with known properties. Other 
bins are defined for convenience so that similar particles can be grouped together. Experience has 
shown that it is difficult to predict apriori what phases will be determined in an analysis; this is 
particularly true in the case of fly ash samples which are largely amorphous at combustion 
temperatures. Often a large number fraction of the analyzed particles do not fit any of the 
predefined phases and are. classified as unknown. In such cases, it is difficult to interpret the 
analysis results since nothing is known about a large fraction of the sample. It is desirable then to 
have a means of extracting some sort of composition information from the unclassifiable particles. 
This paper addresses the problem of defining new bins to describe particles which do not fit into 
the predefined classifications using an algebraic formulation of the criteria 

METHOD 

CCSEM reports particle compositions as n-dimensional vectors, where n is the number of 
elements analyzed. Typically, n is equal to twelve and the elements are. Na, Mg, Al, Si, P, S, C1, 
K, Ca, Ti, Fe, and Ba. To determine whether or not a given composition belongs to a phase, 
numerical tests or criteria are. applied. These tests are linear inequalities, e.g., Si + AI< 80, or 
ratios, e.g. SVAI 1 2 ,  which can be expressed as linear inequalities. Therefore, the test for 
membership in a phase can be written as a system of linear inequalities. Using matrix notation, the 
test can be written Ax S b, where the rows in the matrix A and the vector b correspond with the 
individual criteria. 

Consider for example, a simple system with two elements, X and Y, and two phases, A 
and B with constraints as follows: 

Phase A Phase B 
X140 x 2 80 

YS40 Y s40 
x+yslOO 

It is implicitly assumed that compositions are limited by zero below and by one hundred percent 
above. The algebraic forms for these two phases would be: 

Phase A Phase B 

1 1  100 
Note that the sign of the frs t  constraint for phase B has been changed so that it could be written in 
the less than or equal to form. The phases can also be represented as regions in the x-y plane, as 
illustrated in Figure 1. Any composition (x,y) falling with the square region at the lower left 
would be classified as phase A. Likewise, phase B would comprise any composition falling 
within the triangular region at upper right. Any other composition, such as the points indicated in  
the figure, would be unclassified. 

The unclassifiable points in Fig. 1 appear in two distinct clusters. One is nearer to phase. A 
and the other is nearer to phase B. The observation that unknown particles tend to appear in 
clusters when plotted in this fashion and that a cluster would of necessity lie closest to one phase is 
the basis for the algebraic classification scheme: fmd the distance to each of the defined phases and 
then group the composition with the phase having the shortest distance. 

Finding the distance from a point to a given phase is an optimization problem called a 
quadratic program. The quadratic objective function is the square of the Euclidean distance from 
the composition to a composition that meets the phase’s criteria. By minimizing this objective 
function subject to the criteria, the composition within the phase closest to the given composition is 
determined. Examination of the resulting groupings of unknown compositions from a complete 
CCSEM analysis reveals trends and clusters of points which can be used to define new phases. 
This classification scheme is shown in Fig. 2. 

The algorithm has been implemented using a sparse matrix data structure to minimize the 
memory and computational requirements. Several thousand known compositions can be classifid 
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in minutes on a 7 5 W z  Pentium computer. Using a numerical Sequential Quadratic Programming 
(SQP) algorithm to solve the quadratic programs on an HP 9000/155 workstation, several 
thousand unknown compositions can be classified in about an hour. The number of optimizations 
required is m.p, where m is the number of unknown particles and p is the number of known 
phases. Given this dependence, it has proven wise to start with a relatively small number of 
particles, several hundred rather than several thousand, and def ie  new phases based on the initial 
results before proceeding to the complete data set. This dramatically reduces the number of 
optirmzations. 

RESULTS AND DISCUSSION 

\ 

\ 

The method has been applied to the analysis of ash derived from Pittsburgh #8, an eastern 
subbituminous coal, and ash from Black Thunder, a westem subbituminous coal from the 
Anderson seam of the Powder River Basin. ASTM ash analyses of the elemental oxides from both 
coals are presented in Table 1. Note the low-rank Black Thunder contains a great deal of 
organically bound calcium and relatively few discrete mineral grains. Its ash, therefore, is 
expected to be significantly influenced by the organically bound constituents. The inorganic 
content of Pittsburgh #8, however, is primarily discrete minerals. The major mineral species 
found in the Pittsburgh coal are pyrite, quartz, aluminosilicates, potassium aluminosilicates, 
pyrite, and calcite [I]. The ash of Pittsburgh #8 is controlled by the transformations (coalescence 
and hgmentation) of the discrete minerals during combustion. 

Ash data from both coals were classified using a typical set of phases. This set consisted 
of 47 well-defined phases [3] and several more loosely-defined aluminosilicate phases. The 
results of the classification are presented in Table 2. The heavy line separates the loose phases 
from the phases that were more well-defined. Minor phases have been omitted from the table for 
brevity. The phase set used is clearly inadequate for characterizing these ashes; 58% of the Black 
Thunder and 24% of the Pittsburgh #8 particles were unclassifiable. In fact, only 14% of the 
Black Thunder and 7.54% of the Pittsburgh #8 was classified with the well-characterized bins, and 
the majority of that was quartz. 

In the Pittsburgh #8 ash, 39% of the particles contained five mole percent or more iron. Of 
these, 19% or nearly half of the iron-bearing particles were unclassifiable. Given the importance 
of iron in ash deposition behavior, it is essential to know more about its occurrence in the ash than 
is provided by the this typical phase set. 

The algebraic classification scheme was applied to the Black Thunder ash using the 47 
well-defined phases. Results are tabulated in Table 3. The quantities are reported in percentage of 
original particles (classifiable plus unclassifiable). Minor phases (less than 1% of total) have been 
omitted. Only values for Mg, Al, Si, Fe, and Ca are reported since these five elements were found 
to be sufficient to characterize the bins. Of course, other elements do play a role in the properties 
of individual particles and the category as a whole. Their omission in the table does not imply that 
they should be ignored when the CCSEM analysis is interpreted. The table includes the mean 
value and standard deviation for each of the elements included. 

Using the 47 phases, 85% of the Black Thunder ash particles were unclassifiable. The 
algebraic classification scheme was able to classify 82% of the particles into eight major phases. 
The contents of the various bins are distinct from one another, as evidenced by the differences in 
the means of the major elements which characterize each bin. The “near quartz” category has the 
highest mean silicon content, 76%. Several bins share the same major elements, but in clearly 
distinguishable compositions. It is sometimes desirable to further subclassify these bins; 
preliminary work has shown that classifications based on the ranking of the four most abundant 
elements in a particle is a good basis for distinguishing composition within a nearest-phase 
category. 

To focus on the disaibution of iron in the 24% of the particles that were found 
unclassifiable, the algorithm was applied to the Pittsburgh #8 ash using the phase set which 
included the loosely-defined bins. The results for the major iron-containing bins are presented in 
Table 4. Bins were chosen for inclusion based on the fraction of the total iron-bearing particles 
they contained; bins with less than one percent have been omitted. It is clear that most of the 
unclassifiable particles contain iron and that they can be grouped into nine major categories. The 
means in these categories are distinct, indicating that the algorithm has indeed differentiad the 
particles. 

In most cases, particles did not fit into their nearest phases because they contained too 
much of a minor constituent, Cutoffs are typically five mole percent. In the “near Fe-Al-Silicate” 
phase, 44% of the particles contained too much calcium, 32% contained too much potassium, and 
18% contained too much sodium. Many particles violated more than one consaainr i.e. they 
contained too much of two or more elements. Examination of the reasons why particles do not fit 
the known phases yields insight into both the ash composition and the mechanisms by which it 
formed. 

CONCLUSIONS 

Particle composition classification schemes must be designed to provide meaningful 
information about specific ash samples due to the variability in the parent fuels and combustion 
conditions. Using a generic set of phases, large fractions of the particles are often unclassifiable. 
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The algebraic interpretation of the phase criteria provides a straightforward means of classifying 
these particles with no assumptions about the dominant elements or the form that the new 
classifications should take. The classifications thus made provide a number of distinct categories 
that can be used to characterize the ash. 
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Table 2. Phase Distribution of Ash Particles 

Phase Black 'Ihunda Piasburgh #8 
(46 of Particles) (% of Particles) 

1.1 0.37 

I ~ 12.38) ~ 5.3111 

Na-AI-Silicate 5.35 1.8 

K-AI-Silicate 1.44 8.67 

FeAI-Silicate 0.21 14.55 

.Fe-Silicate 0.37 2.37 
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Table 3. Nearest Phase Classifications of Black Thunder Ash 

au- 3.4 

Ca-Aluminate 3.6 

7.7 11 14.1 21.5 4.7 48.8 

std I 5.5 I 7.8 I 3.4 I 6.8 1 3.9 
TriCa-Aluminate I 35.4 1 I I I I I 

Table 4. Nearest Phase Classification of Iron Particles in Pittsburgh #8 Ash 

'ha% NearestPhase % Na Mg AI SI S K Ca Fe 

lave 10.81 1 ~ 1 ~ ~ ~ 1 ~ 7 4 1  401 0412AX1114 

6 Ca-AI-Silicate 
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Figure 1. Phases A and B 
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