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INTRODUCTION

Data from computer controlled scanning electron microscopy (CCSEM) are typically
interpreted by grouping particles into bins based on their elemental compositions. Some of the
bins correspond to well-defined mineralogical species or phases with known properties. Other
bins are defined for convenience so that similar particles can be grouped together. Experience has
shown that it is difficult to predict a priori what phases will be determined in an analysis; this is
particularly true in the case of fly ash samples which are largely amorphous at combustion
temperatures. Often a large number fraction of the analyzed particles do not fit any of the
predefined phases and are classified as unknown. In such cases, it is difficult to interpret the
analysis results since nothing is known about a large fraction of the sample. It is desirable then to
have a means of extracting some sort of composition information from the unclassifiable particles.
This paper addresses the problem of defining new bins to describe particles which do not fit into
the predefined classifications using an algebraic formulation of the criteria.

METHOD

CCSEM reports particle compositions as n-dimensional vectors, where n is the number of
elements analyzed. Typically, n is equal to twelve and the elements are Na, Mg, Al, Si, P, S, Cl,
K, Ca, Ti, Fe, and Ba. To determine whether or not a given composition belongs to a phase,
numerical tests or criteria are applied. These tests are linear inequalities, e.g., Si + Al < 80, or
ratios, €.g. Si/Al < 2, which can be expressed as linear inequalities. Therefore, the test for
membership in a phase can be written as a system of linear inequalities. Using matrix notation, the
test can be written Ax < b, where the rows in the matrix A and the vector b correspond with the
individual criteria.

Consider for example, a simple system with two elements, X and Y, and two phases, A
and B with constraints as follows:

Phase A Phase B

x s 40 x 280

y s 40 ys40
x+yx< 100

It is implicitly assumed that compositions are limited by zero below and by one hundred percent
above. The algebraic forms for these two phases would be:

Phase A Phase B
10][x] [40 10 ~80
[0 1Hy]‘[40] 0 IHS 20
. 11" | 100

Note that the sign of the first constraint for phase B has been changed so that it could be written in
the less than or equal to form. The phases can also be represented as regions in the x-y plane, as
illustrated in Figure 1. Any composition (x,y) falling with the square region at the lower left
would be classified as phase A. Likewise, phase B would comprise any composition falling
within the triangular region at upper right. Any other composition, such as the points indicated in
the figure, would be unclassified.

The unclassifiable points in Fig. 1 appear in two distinct clusters. One is nearer to phase A
and the other is nearer to phase B. The observation that unknown particles tend to appear in
clusters when plotted in this fashion and that a cluster would of necessity lie closest to one phase is
the basis for the algebraic classification scheme: find the distance to each of the defined phases and
then group the composition with the phase having the shortest distance.

Finding the distance from a point to a given phase is an optimization problem called a
quadratic program. The quadratic objective function is the square of the Euclidean distance from
the composition to a composition that meets the phase’s criteria. By minimizing this objective
function subject to the criteria, the composition within the phase closest to the given composition is
determined. Examination of the resulting groupings of unknown compositions from a complete
CCSEM analysis reveals trends and clusters of points which can be used to define new phases.
This classification scheme is shown in Fig. 2.

The algorithm has been implemented using a sparse matrix data structure to minimize the
memory and computational requirements. Several thousand known compositions can be classified
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in minutes on a 7SMHz Pentium computer. Using 2 numerical Sequential Quadratic Programming
(SQP) algorithm to solve the quadratic programs on an HP 9000/755 workstation, several
thousand unknown compositions can be classified in about an hour. The number of optimizations
required is m-p, where m is the number of unknown particles and p is the number of known
phases. Given this dependence, it has proven wise to start with a relatively small number of
particles, several hundred rather than several thousand, and define new phases based on the initial
results before proceeding to the complete data set. This dramatically reduces the number of
optimizations.

RESULTS AND DISCUSSION

The method has been applied to the analysis of ash derived from Pittsburgh #8, an eastern
subbituminous coal, and ash from Black Thunder, a western subbituminous coal from the
Anderson seam of the Powder River Basin. ASTM ash analyses of the elemental oxides from both
coals are presented in Table 1. Note the low-rank Black Thunder contains a great deal of
organically bound calcium and relatively few discrete mineral grains. Its ash, therefore, is
expected to be significantly influenced by the organically bound constituents. The inorganic
content of Pittsburgh #8, however, is primarily discrete minerals. The major mineral species
found in the Pittsburgh coal are pyrite, quartz, aluminosilicates, potassium aluminosilicates,
pyrite, and calcite [1]. The ash of Pittsburgh #8 is controlled by the transformations (coalescence
and fragmentation) of the discrete minerals during combustion.

Ash data from both coals were classified using a typical set of phases. This set consisted
of 47 well-defined phases [3] and several more loosely-defined aluminosilicate phases. The
results of the classification are presented in Table 2. The heavy line separates the loose phases
from the phases that were more well-defined. Minor phases have been omitted from the table for
brevity. The phase set used is clearly inadequate for characterizing these ashes; 58% of the Black
Thunder and 249 of the Pittsburgh #8 particles were unclassifiable. In fact, only 14% of the
Black Thunder and 7.54% of the Pittsburgh #8 was classified with the well-characterized bins, and
the majority of that was quartz.

In the Pittsburgh #8 ash, 39% of the particles contained five mole percent or more iron. Of
these, 19% or nearly half of the iron-bearing particles were unclassifiable. Given the importance
of iron in ash deposition behavior, it is essential to know more about its occurrence in the ash than
is provided by the this typical phase set.

The algebraic classification scheme was applied to the Black Thunder ash using the 47
well-defined phases. Results are tabulated in Table 3. The quantities are reported in percentage of
original particles (classifiable plus unclassifiable). Minor phases (less than 1% of total) have been
omitted. Only values for Mg, Al, Si, Fe, and Ca are reported since these five elements were found
to be sufficient to characterize the bins. Of course, other elements do play a role in the properties
of individual particles and the category as a whole. Their omission in the table does not imply that
they should be ignored when the CCSEM analysis is interpreted. The table includes the mean
value and standard deviation for each of the elements included.

Using the 47 phases, 85% of the Black Thunder ash particles were unclassifiable. The
algebraic classification scheme was able to classify 82% of the particles into eight major phases.
The contents of the various bins are distinct from one another, as evidenced by the differences in
the means of the major elements which characterize each bin. The “near quartz” category has the
highest mean silicon content, 76%. Several bins share the same major elements, but in clearly
distinguishable compositions. It is sometimes desirable to further subclassify these bins;
preliminary work has shown that classifications based on the ranking of the four most abundant
elements in a particle is a good basis for distinguishing composition within a nearest-phase
category.

To focus on the distribution of iron in the 24% of the particles that were found
unclassifiable, the algorithm was applied to the Pittsburgh #8 ash using the phase set which
included the loosely-defined bins. The results for the major iron-containing bins are presented in
Table 4. Bins were chosen for inclusion based on the fraction of the total iron-bearing particles
they contained; bins with less than one percent have been omitted. It is clear that most of the
unclassifiable particles contain iron and that they can be grouped into nine major categories. The
mea.n? in these categories are distinct, indicating that the algorithm has indeed differentiated the
particles.

In most cases, particles did not fit into their nearest phases because they contained too
much of a minor constituent. Cutoffs are typically five mole percent. In the “near Fe-Al-Silicate”
phase, 44% of the particles contained too much calcium, 32% contained too much potassium, and
18% contained too much sodium. Many particles violated more than one constraint; i.e. they
contained too much of two or more elements. Examination of the reasons why particles do not fit
;he lmgwn phases yields insight into both the ash cornposition and the mechanisms by which it

‘ormed.

CONCLUSIONS

Particle composition classification schemes must be designed to provide meaningful
information about specific ash samples due to the variability in the parent fuels and combustion
conditions. Using a generic set of phases, large fractions of the particles are often unclassifiable.
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The algebraic interpretation of the phase criteria provides a straightforward means of classifying
these particles with no assumptions about the dominant elements or the form that the new
classifications should take. The classifications thus made provide a number of distinct categories
that can be used to characterize the ash.
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Table 1. Ash Oxide Analyses (SOs-free) of Black Thunder and Pittsburgh #8 Coals

Weight % of Ash Black Thunder Pittsburgh #8
12} [8)]
Si0, 36.7 47.86
AlO, 19.7 21.79
Fey04 6.1 18.01
TiO, 1.5 1.06
Ca0 25.5 6.69
. MgO 5.7 116
Na,O 1.7 0.75
K0 04 173
P20s 1.1 0.37

Table 2. Phase Distribution of Ash Particles

Phase Black Thunder Piusburgh #8
(% of particles) (% of particles)
12.38 5.31
firon Oxide/Carbonate 0.0 223
Plagioclase Solution 176 0.0
iKaolinite 12.54 35.7'“
ICa-Al-Silicate 6.2 3.61“
a-AlSilicate 5.35 14
fi-Al-Siticate 144 867
lFe-Al—Silicate 0.21 14.55
IFe-Silicate 0.37 2.37
Enclasiﬁed 57.57 24.59
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Table 3. Nearest Phase Classifications of Black Thunder Ash

Phase Nearest Phase Yo Mg | Al Si Ca Fe
ave | 20| 82761 | 56| 16

Quartz. 34
1 sd | 75] 43]192| 7.8 28
ave | 117 [29.8| 4.6 (451 6.5

Ca-Aluminate 3.6
2 sd | 42| 28} 29| 28| 25
ave | 14.1]215| 4.7(488| 7.7

Tri Ca-Aluminate 354
3 sd | 55| 78| 34| 68 39
ave | 89 (265|124 1384 87

Gehlenite 43
4 sd | 42 76| 55| 59| 7.5
ave | 5.9|282}254|289]| 54

Gehlenite-Na melilite 2.7
5 sd | 30| 49| 78} 64| 57
ave | 107 | 143|307 | 337 | 59

Akermanite-Na melilite | 5.8
6 sd | 72| 69|155] 79| 58
ave | 3.6 ]372]|32.1|184] 36

Anorthite 1.3
7 ad | 24| 44| 55) 39 32
ave | 0.6 382503 33| 14

Plagioclase Solution 252
8 sd | 14] 97| 85] 45| 3.4

Table 4. Nearest Phase Classification of Iron Particles in Pittsburgh #8 Ash

Phase Nearest Phase % Na | Mg | Al Si S K Ca Fe
ave 08| 1.8|239(274| 40| 04248 134

1 Gehlenite-Na melilite 0.65
std 14} 21| 40| 78} 68| 12| 61| 6.6
ave 1.5] 54| 150|264 | 33| 01253178

2 Akermanite-Na melilite | 1.35
std 20| 56| 47102 51| 05| 66104
ave 05| 2.0 (325|347 1.8 07150103

3 Anorthite 0.58
std 08} 22| 26| 29| 3.1} 09 26/ 35
ave 340 24(290(369 | 41} 21| 89| 106

4 Plagioclase 1.2
std 27| 23) 48| 55} 63| 17| 35| 45
ave 07| 09(213]6811 3.0 16| 12| 21

5 Kaolinite 2.7
std B2 1771531814 291 15| 19| 1.8
ave 12| 43|284(350| 18| 1.1|190( 58

6 Ca-Al-Silicate 3.66
std 150 76} 90112 ] 28| 14[129| 2.7
ave 39 14311398 34| 77| 1.3] 44

7 K-Al-Silicate 2.01
sud 46| 241124149 47] 97| 21| 29
ave 27) 29(300(374] 14| 32| 42155

8 Fe-Al-Silicate 8.99
std 21| 44] 7.1] 9.0 28} 21 34} 117
ave 19| 1.71109(23.5| 49| 06} 50]49.6

9 Iron Silicate 1.76
std 451 421 701226 85] 11) 79/203
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Figure 1. Phases A and B
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Figure 2. The Algebraic Classification Algorithm
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