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1. Introduction 
Transition state theory (TST) in its thermodynamic formulation’ is the most widely used tool for 

analyzing rate constants of chemical reactions (for example, see Benson’). The dynamical formulation of 
TST3 provides the best approach to examine the approximations in TST and the basis for systematically 
improving the conventional theory. Over the past two decades, significant progress has been made in 
developing methods for quantitative predictions of reaction rate constants based upon the dynamical 
formulation of TST (see reviews by Truhlar, Hase, and Hynes‘ and Truhlar, Garrett, and Klippensteins). 
As an example. quantized variational transition state theory (VTST) with multidimensional, semiclassical 
tunneling corrections6’8 are capable of accurate predictions of gas-phase rate  ons st ants.'.'^ The accuracy of 
the potential energy surface is typically the major factor limiting the accuracy of the calculated rate 
constants. In this paper we bnefly review VTST methods and there application to gas-phase reaction. We 
also briefly outline an approach to extend these methods to treat reactions in solution. 

2. VTST for Gas-Phase Reactions 
In the dynamical formulation of TST, the classical equilibrium rate constant is derived using a 

single approximation, the fundamental assumptlon of TST.”.” A dividing surface is defined so that all 
reactive trajectories must pass through it. The fundamental dynamical assumption is then defined as 
follows: a reactive trajectov originating in reactants must cross the dividing surface only once and 
proceed to products. The TST expression for the rate constant can then be expressed using equilibrium 
statistical mechanics without the need to calculate classical trajectories. Classical trajectories that recross 
the dividing surface cause a breakdown of the fundamental assumption. All reactive classical trajectories 
must cross the dividing surface and these are correctly counted in TST. However, some nonreactive 
trajectories may also be counted as reactive so that TST provides an upper bound tothe exact reactive 
flux of classical trajectories through the dividing surface This is the basis of classical variational TST in 
which the definition ofthe dividing surface is optimized to minimize the rate  ons st ant.^^.^^ 

In VTST the dividing surface is viewed as a tentative dynamical bottleneck to flux in the product 
direction, and the best bottleneck (the dividing surface allowing the least flow of flux) is located 
variationally. A practical approach is to define the dividing surfaces to be orthogonal to the reaction path, 
where the reaction path is defined as the minimum energy path connecting the saddle p i n t  with both the 
reactant and product regions The minimum energy path is located by following the path of steepest 
descents in both directions from the saddle point in a mass-weighted coordinate system such that each 
degree of freedom has the same effective mass in the kinetic energy expression. The generalized 
expression for the thermal rate constant for temperature T is given as a function of the location s of the 
dynamical bottleneck along the reaction coordinate 

kGT(T,s) = a H ~ e x p ( - V M p ( s ) / k g T )  
h W ( T )  

where o is a symmetry factor, kB is Boltmann’s constant, h is Planck‘s constant, QGT(T,s) is the 
generalized partition function for the bound degrees of freedom orthogonal to the reaction path at s, 
&(TI is the reactant partition function, and VmEp(s) is the value of the potential along the reaction path 
at s. In conventional TST, the dividing surface is placed at the saddle point, defined by s=O 

kTST(T)=kGT(T,s=O) (2) 

Conventional transition state theory requires information about the potential energy surface only in the 
saddle point and reactant regions. In particular, the value of the potential at the saddle point (relative to 
the reactant value) is required, and if the partition functions are computed using a harmonic 
approximation, then the matrix of second derivatives of the potential energy with respect to mass- 
weighted coordinates (Hessian mabix) suffices. In one version of variational transibon state theory, the 
canonical variational theory (CVT),”.’6 the rate constant expression in eq. ( I )  is minimized with respect 
to s 

kCm(T)= minkGT(T,s) (3) 
S 
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The improved canonical variahonal theory (ICVT)” also variationally optimizes the location of the 
transition state dividing surface for a given temperature, but provides an improved treatment of threshold 
energies by using an ensemble which removes energies below the ground-state adiabatic threshold. To 
compute the rate constant using either the canonical or improved canonical variational theory, more 
information about the potential energy surface is required than for a conventional transition state theory 
calculation; information about the potential in a region around the reaction path is also required. For a 
harmonic treatment of the partihon functions, the Hessian matrix along the minimum energy path will 
suffice. In this case the potential information needed is the energy and its first and second derivatives 
along the minimum energy path. 

For many reactions of practical interest, particularly those involving hydrogen atom transfer, 
quantitative accuracy in computed rate constants requires that quantum mechanical effects be included in 
the theory. However, the fundamental assumption is inherently a classical approximation since it requires 
knowledge of both the coordinate and momentum (or flux) at the dividing surface. Additional 
approximations are needed to include quantum mechanical effects into TST. The standard approach is a 
separable 
includes a correction factor for quantum mechanical motion dong the reaction coordinate (e&, 
tunneling). The failure of this approach has been attributed largely to nonseparable effects, particular on 
quantum mechanical t ~ n n e l i n g . ~ ~ . ~ ~  The development of multidimensional tunneling correction factors 
that are consistent with variational transition state theory was greatly facilitated by the realization that the 
adiabatic theory of reactions is equivalent to one form of variational TST (microcanonical VTST).1S.’6 In 
this approach, the partition functions in eq. (1) are evaluated quantum mechanically, and quantum 
mechanical effects on the reaction coordinate motion (e.g., quantum mechanical tunneling) are included 
by a multiplicative factor - the transmission coefficient. 

adiabatic potential 

that replaces classical partihon functions by quantum mechanical ones and 

In VTST, it is consistent to weat tunneling as occurring through the vibrationally-rotationally 

va (s, a) = V-(S) + E$jT(S) (4) 

where a is a collective index of the quantum numbers for the bound modes and &gl (?.)is the bound 
energy level for state a at the generalized transition state located at s along the reaction path. For thermal 
rate constants the tunneling is approximated using only the ground-state adiabatic potential curve (a=O). 
The adiabatic approximation is made in a curvilinear coordinate system, and although the potential term is 
simple, the kinetic energy term is complicated by factors dependent upon the curvature of the reaction 
path. For systems in which the curvature of the reaction path is not too severe, the small-curvature 
semiclassical adiabatic ground state method”,22 includes the effect of the reaction-path curvature to 
induce the tunneling path to ‘cut the corner’ and shorten the tunneling length The small-curvature 
tunneling (SCT) probabilities PSCr(E) are computed for energies below the maximum in the ground-state 
adiabatic potenhal curve (denoted VAG) where transmission occurs by tunneling and above VAG where 
nonclassical reflection can diminish the transmission probability. The SCT transmission coefficient is 
given by the normalized Boltzmann average of PscT(E) 

KSCT(T) = p exp(pVAc) T d E  Psm(E) exp(-pE) 
0 

where P=l/kBT. Combining the SCT transmission coefficient with the improved canonical variational 
theory rate constant yields 

k l c w l S C T ( T )  = KSCT(T) k I c m ( T )  (6) 

To construct the adiabatic potential, the type of potential information required is identical to that needed 
for the variational transition state theory calculation For the SCT calculation it is also necessary to know 
the curvature of the reaction path which can be obtained from second derivatives of the potential along 
the reaction path. Thus, to provide a consistent and accurate estimate of the tunneling, no new information 
about the potential energy surface is required. 

Accurate quantum rate constants for nearly forty gas-phase bimolecular reactions provide 
benchmarks to test the accuracy of the VTST calculations. VTST calculations, which include 
multidimensional tunneling corrections, have been tested against accurate quantal results for about 30 
atomdiatom reactions in a collinear world and nearly 10 reactions in three dimensions. Conventional 
TST was found to be accurate within a factor of 2 for only about 25% of these systems and had errors 
larger than of 5 in about 25% of the systems. The VTST calculations were generally within 50% of the 
accurate results with errors less than a factor of two in all cases. 

3. VTST for Solution-Phase Reactions 

identification of a saddle point and a reaction path connecting the saddle point with reactants and 
The computational procedures described above to perform VTST calculations require 
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products. For reactions in solution, there can be many saddle points that are close in energy and that differ 
significantly only in the configuration of the solvent. The multiple saddle points are a reflection of the 
large harmonicity in the solvent that makes the quantum mechanical calculation of the partition 
functions impractical. Procedures are outlined elsewhere23 that allow VTST calculations, which are based 
upon Potential energy surfaces and include quantum effects, to be extended to solution-phase reactions. In 
this approach the system is separated into a cluster model that contains the part of the system undergoing 
reachon and the solvent that is treated in an approximate manner. The coordinates of the cluster model are 
treated explicitly, and the effects of the extended solvent are approximately included in an effective 
Hamiltonian. The constant proximity of solvent molecules around the solute changes the interaction 
potential within the solute. The resulting mean field potential for the solute is obtained from an 
equilibrium ensemble average over solvent configurations. Since this mean field potential is obtained 
from an equilibrium ensemble average at each solute configuration, the equilibrium solvation assumption 
implies that the solvent molecules instantaneously equilibrate to each new solute configuration. Effects of 
solvent fluctuation from their equilibrium values upon reaction dynamics are included using a reduced- 
dimensionality model that introduces a limited number of addition degrees of freedom in the effective 
Hamiltonian. 

of degrees of freedom and information about the effective potential energy surface for these explicit 
coordinates is needed only in the region of a reaction valley. Explicitly treating only a limited number of 
coordinates obviates some of the difficulties inherent in quantum mechanical TST calculations on 
solution-phase reactions (e.g., the multiple saddle point problem) and also allows the quantum mechanical 
effects to be included by the standard gas-phase procedures outlined above. These procedures are 
computationally intensive, but given the recent advances in computational hardware and s o h a r e ,  these 
calculations are possible. 

This approach for including solvation effects requires explicit treatment of only a limited number 
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