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INTRODUCTION 
Fluid Catalytic Cracking (FCC) is a major refinery process designed to upgrade 

heavy and less valuable petroleum products to gasoline and lighter products. The 
feedstock for the FCC process ranges from light gas oils to heavy hydro-treated resids. 
The complexity of the feedstock, and the associated analytical chemistry and 
computational obstacles, helped shape early FCC modeling approaches (2.3.7). The 
traditional need for easily deployed reaction models led to the formulation of simple, 
lumped kinetic models. Lumped models often fail to capture the complex FCC chemistry 
and as a result are specific to the feedstock, the catalyst used and the operating 
conditions. Additionally, lumped models do not give the detailed product distribution 
required for process design and optimization. 

The new paradigm is to track each molecule in the feed and product through the 
process and to move towards models having fundamental kinetic information. This has 
led to the modeling of the chemistry at the mechanistic level (5.6). These mechanistic 
models have a large number of gaseous and surface species and, hence, are very CPU 
intensive. Thus, on the one hand, the need for a detailed molecular representation and 
fundamental kinetic information make the use of mechanistic models attractive, hut, on 
the other hand, the large solution time renders them of limited use in practice. This 
motivates the development of pathways-level models. Pathways-level models are not as 
large and complex as the mechanistic models because of the exclusion of reactive 
intermediaries, e.g., surface species. They also offer the advantage of being solved in a 
reasonable amount of time. They offer the opportunity to incorporate detailed kinetic 
information by the inclusion of all important observable molecules explicitly, and hence 
have the predictive capability lacking in the lumped models. 

Developing such molecularly explicit models for gasoil fluid catalytic cracking is 
now possible because of two enabling advances. First, recent developments in analytical 
chemistry now allow a molecularly explicit stochastic description of gasoils. Second, the 
explosion in computational power makes possible the necessary bookkeeping to generate 
and solve reaction networks with a large number (O(10’)) of molecules. The aim of this 
work is to develop an automated capability for building pathways-level FCC models for 
heavy hydrocarbons (e.g. gasoils). In the following sections, we will briefly discuss the 
methodology used for determining a molecular description of the feedstock and then also 
outline the strategy used for computer-generation of gasoil FCC pathways-level kinetic 
model. 

FEEDSTOCK CHARACTERIZATION 
The ability of a reaction model to describe the product distribution depends to a 

large extent on the initial conditions Le., the structure and the mole fractions of the 
molecules in the feedstock. Such detailed characterization for the heavier feedstock, such 
as gasoils, is seldom available. Even modem analytical techniques reveal only structural 
attributes (Le. the number of aromatic rings, number of saturated rings, number of 
sidechains, etc.) rather than the detailed individual molecular structures. The first 
challenge, then, is to determine a set or molecules and associated mole fractions 
characteristic of the feed from routinely available analytical data, such as true boiling 
point distribution, average molecular weight, elemental analysis, NMR data and GCMS 
lumps. This can be done using the MoleGen technique (4). 
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In this technique, molecules are represented in terms of a collection of molecular 
attribute building blocks ( e.g. number of aromatic rings, number of naphthenic rings, 
number and length of sidechains, etc.). Each attribute is represented by a probability 
density function. Monte Carlo sampling of the set of probability density functions 
provides a large ensemble of molecules (O(l0‘)). The properties of this ensemble of 
molecules are compared to experimentally obtained analytical data to obtain an optimal 
set of probability density functions. These optimized probability density functions 
contain the statistical description of the feedstock and can be easily transformed into a set 
of molecular structures and their associated mole fractions. 

MODEL BUILDING 

Pathways models for complex feedstocks, such as gasoils, can have a large 
number of molecules and their reactions. It can be quite tedious and time-consuming to 
build such models by hand. This motivates the automation of the model building process. 

To automate the process of reaction network building use is made of graph 
theoretic concepts. In this approach, a molecule is represented by a graph, the atoms 
being the nodes of the graph and the bonds being the edges of the graph. For all the 
reactions in FCC, the connectivities of only a few of the atoms in the involved molecules 
change. This means that a reaction can be represented by the change in the connectivity 
of only a few anodes in the graph. The connectivity matrices of the reactants are 
combined into an augmented reactant matrix, which, after permutation gives the reduced 
matrix for the reactants, containing the connectivities of only those atoms whose 
connectivity changes in the reaction process. The bond breaking and forming (Le., the 
reaction ) is then carried out by simple matrix addition operations ( I ) .  

The chemistry is represented through the implementation of reaction rules. These 
rules rely on theoretical and experience-based kinetic approximations and are useful tools 
in keeping the size of the model realistic without significantly effecting the product 
distribution. The reaction network is then converted to a set of differential equations 
using the OdeGen parsing code ( I ) .  Conceptually, the resulting mathematical model can 
then be solved with appropriate initial conditions and rate constants. However, during the 
developmental stage, the rate constants for most of the reactions are usually not known a 
priori and the model has to be solved within an optimization framework to determine the 
rate constants. 

This requires that the number of rate parameters must be kept to a reasonable 
number to obtain true rate constant information from optimization to the experimental 
data.. Even with the use of reaction tules for the complex FCC chemistry the detailed 
reaction model can have a large number of reactions and their associated rate constants 
(O(103)). Clearly, some organizational or “lumping” scheme that does not sacrifice the 
basic chemistry is in order. To this end, it is useful to realize that much of the complexity 
is statistical or combinatorial, and that the large number of reactions and rate parameters 
in the pathways-level model can be handled by lumping the reactions involving similar 
mechanistic steps into one reaction family. The kinetics of all the reactions within the 
same reaction family are described by a common set of parameters. Differences in the 
reactivity within the same reaction family can be traced to differences in the heat of the 
reaction. 

RESULTS AND MODEL DIAGNOSTICS 
These ideas of feedstock characterization and automated model building were 

applied to gasoil FCC reaction modeling. The analytical data available for gasoil included 
boiling point distribution, average molecular weight, Clay Gel analysis, MS lumps and 
average parameters from NMR analysis. These analytical data were used to determine a 
stochastic molecular representation of the feed using the MolGen technique. The feed 
was described in terms of 222 representative molecules and their mole fractions. 

The feed was then grouped into a few compound classes ( paraffins, iso-paraffins, 
naphthenes and aromatics), which, in tum, were allowed to react through a limited 
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number of reaction' families (cracking, isomerization, dehydrogenation, hydrogenation, 
and aromatization). This allowed the division of all the reactions into a small number of 
reaction families with associated rate parameters. Table I shows the model diagnostics 
for the final model. The use of reaction family concept allowed the description of all the 
rate constants for 3293 reactions in terms of about 30 rate parameters. 

Table 1. Gasoil Fluid Catalytic Cracking Model Diagnostics 

1 To develop the optimal reaction network and to determine the rate constants the 
model predictions were constrained to match the pure components as well as gasoil 
experimental data. As an example of the quality of tit between model and experimental 
values Figure 1 shows the results for n-heptane cracking. 
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Figure la. Parity Plot for Heptane Conversion at different weight hourly space 
velocity (WHSV). 
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Figure lb.  Panty  Plot of Selectivity by Carbon number for n-heptane cracking. 
Values in brackets are the WHSV. 
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Figure IC. Parity Plot of Paraffin / Olefin ratio for n-heptane cracking. Values 
in brackets a re  the WHSV. 

CONCLUSIONS : 
1. Graph theory was successfully used to generate a molecularly explicit gas oil FCC 

model containing 823 species and 3293 reactions. 

2. The parity of the predicted results was reasonably good with the experiments. This 
suggests that the stochastic approach for generation of the feedstock and the reaction 
family concept for expressing the rate constants are very good tools for predicting the 
reactivity of a complex mixture. 

3. This approach to automated pathways-level model building can be easily extended to 
other feedstocks and catalyst systems in order to obtain kinetics information. 
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