Argonne licenses diamond semiconductor discoveries to AKHAN Technologies

By Joseph BernsteinBy Jared SagoffMarch 4, 2013

LEMONT, Ill. – The U.S. Department of Energy’s Argonne National Laboratory announced today that the laboratory has granted AKHAN Technologies exclusive diamond semiconductor application licensing rights to breakthrough low-temperature diamond deposition technology developed by Argonne’s Center for Nanoscale Materials (CNM).

The Argonne-developed technology allows for the deposition of nanocrystalline diamond on a variety of wafer substrate materials at temperatures as low as 400 degrees Celsius. The combination of the Argonne’s low-temperature diamond technology with AKHAN’s Miraj Diamond™ process represents the state of the art in diamond semiconductor thin-film technology.

“This licensing agreement gives us the impact of a one-two punch, in which we combine AKHAN’s novel process to achieve efficient n-type doping in diamond with Argonne’s low-temperature diamond deposition technology,” said Argonne nanoscientist Anirudha Sumant. “This will break barriers that restricted the use of diamond thin films in the semiconductor industry limited to only p-type doping.”

“This is an important step in the realization of a ‘Diamond Age,’” added Andreas Roelofs, Argonne's CNM Deputy Division Director and Industrial Relations Liaison. “It is always wonderful to see when basic materials research leads to promising new technology developments. Having a company license your technology is the best proof of showing that you are working on relevant questions.”

AKHAN and Argonne are planning to develop this further through a Cooperative Research and Development Agreement (CRADA) initiative.

As part of a recent collaborative project, AKHAN and Argonne researchers were able to demonstrate working diamond devices with improved performance using the Miraj Diamond™ process based on conventional high temperature nanocrystalline diamond. AKHAN announced the availability of published characterization data of the company’s Miraj Diamond™ technology in the Materials Research Society (MRS) Online Proceedings Library. In the paper, titled “On Enabling Nanocrystalline Diamond For Device Use: Novel Ion Beam Methodology and The Realization Of Shallow N-Type Diamond,” AKHAN and Argonne researchers confirm breakthrough morphological, phase, and electrical characterization data for both n-type NCD wafer material and NCD PIN diode devices. The full paper is available through Cambridge Journals Online.

After many years of research and development, AKHAN Technologies, Inc., an Illinois Company, was formed in April 2007 by its founder, Adam Khan, to commercialize Diamond Lattice Technology. Commercial realization of diamond-based electron devices is the primary focus of AKHAN Technologies, Inc. Further, AKHAN Technologies, Inc., is committed to continually introducing the most advanced diamond device technology in both the digital and discrete markets to the global semiconductor community. With extensive diamond technology experience and a strong Board of Directors, AKHAN is well positioned to play an important role in enabling the “diamond age” of microelectronics. For more information, please visit the AKHAN Technologies website.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), which are premier national user facilities for interdisciplinary research at the nanoscale and are supported by the DOE Office of Science. Together, the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials. The NSRCs constitute the largest infrastructure investment of the National Nanotechnology Initiative, and they are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories.  For more information about the DOE NSRCs, please visit