Argonne National Laboratory

Feature Stories

Date Postedsort ascending
Inside an engine is a harsh place: the intense heat and pressure cause the parts to wear away and break down. But this new coating, which rebuilds itself as soon as it begins to break down, could protect engine parts (and more) for much longer.
9 cool science & tech stories from Argonne in 2016

As 2016 draws to a close, we’re looking back at just a few of the many cool stories that came out of research conducted by Argonne scientists and engineers this year. These discoveries are just a tiny sample of how Argonne researchers help address energy challenges, boost the economy through new discoveries and technologies, and expand scientific knowledge.

December 22, 2016
In September, Argonne hosted over 130 IXPUG participants from around the world for four days of tutorials, workshops and talks aimed at illuminating the still relatively unplumbed world of the Xeon Phi processor. Pictured: Aaron Knoll’s presentation on “Visualization with OSPRay: Research and Production.” (Photo by Mark Lopez/Argonne National Laboratory; click to view larger.)
Programmers trade knowledge on Xeon Phi processor at IXPUG conference

In September, Argonne hosted over 130 IXPUG participants from around the world for four days of tutorials, workshops and talks aimed at illuminating the still relatively unplumbed world of the Xeon Phi processor. Users, programmers and systems administrators collaborated to share experiences, trade tips and help one another optimize code for applications ranging from simulating brain tissue to modeling the evolution of the cosmos.

December 21, 2016
Located fifteen miles north of the Grand Canyon, the Glen Canyon Dam delivers water from the Upper to the Lower Colorado River Basin. Argonne experts helped recommend a long-term strategy for the dam’s operation that would balance hydropower with the protection of environmental, cultural and recreational resources in the area. (Image by John Hayse/Argonne National Laboratory.)
New report balances environmental interests and power needs for Glen Canyon Dam

Researchers at Argonne have helped develop a plan for the operation of Glen Canyon Dam in Glen Canyon National Recreation Area, upstream of Grand Canyon National Park. The plan, known as the Glen Canyon Dam Long-Term Experimental and Management Plan, and documented in a final environmental impact statement, recommends a strategy that would balance hydropower with the protection of environmental, cultural and recreational resources in the area.

November 17, 2016
DOE is partnering with the National Cancer Institute in an “all-government” approach to fighting cancer.  Called the Joint Design of Advanced Computing Solutions for Cancer, this initial three-year pilot project makes use of DOE supercomputing resources to build sophisticated computational models that facilitate breakthroughs in the fight against cancer on the molecular, patient and population levels. (Image by Argonne National Laboratory)
Cancer’s big data problem

The U.S. Department of Energy is partnering with the National Cancer Institute in an “all-government” approach to fighting cancer. Part of this partnership is a three-year pilot project called the Joint Design of Advanced Computing Solutions for Cancer, which will use DOE supercomputing to build sophisticated computational models to facilitate breakthroughs in the fight against cancer on the molecular, patient and population levels.

October 19, 2016
Researchers at Argonne modeled the HcaR protein complex, above, a sort of molecular policeman that controls when to activate genes that code for enzymes used by  Acinetobacter bacteria to break down compounds for food. Understanding these processes can help scientists develop ideas for converting more carbon in soil. (Image courtesy Kim et al./Journal of Biological Chemistry.)
Two protein studies discover molecular secrets to recycling carbon and healing cells

Researchers at Argonne National Laboratory have mapped out two very different types of protein. One helps soil bacteria digest carbon compounds; the other protects cells from the effects of harmful molecules.

September 9, 2016
Argonne Distinguished Fellow Paul Messina has been tapped to lead  the DOE and NNSA’s Exascale Computing Project with the goal of paving the way toward exascale supercomputing.
Messina discusses rewards, challenges for new exascale project

The exascale initiative has an ambitious goal: to develop supercomputers a hundred times more powerful than today’s systems. Argonne Distinguished Fellow Paul Messina, who has been tapped to lead a DOE/NNSA project designed to pave the way, speaks on the potential for exascale and the challenges along the way.

June 8, 2016
Researchers from Michigan State University are using Mira to perform 3-D simulations of the final moments of a core-collapse supernova’s life cycle. This visualization is a volume rendering of a massive star's radial velocity. In comparison to previous 1-D simulations, none of the structure seen here would be present. (image credit: Sean Couch, Michigan State University)
3-D simulations illuminate supernova explosions

Researchers from Michigan State University are using Mira to perform large-scale 3-D simulations of the final moments of a supernova’s life cycle. While the 3-D simulation approach is still in its infancy, early results indicate that the models are providing a clearer picture than ever before of the mechanisms that drive supernova explosions.

June 2, 2016
Several different remediation processes are available to clean up soil, varying in efficiency, cost and sustainability for specific site conditions. When officials suspect a site is contaminated, they conduct an assessment to determine the pollutant, the extent of contamination and the appropriate method to remediate the soil. (Click image to enlarge.)
Five ways scientists can make soil less dirty

Argonne's Applied Geosciences and Environment Management Program evaluates potentially contaminated sites and applies remediation methods that are both efficient and environmentally friendly by reducing secondary impacts, such as emissions from trucks that transport soil to a treatment facility.

May 23, 2016
A row of tanker trucks transport water from Lake Sakakawea in North Dakota's Bakken region to oil well production sites. The water is injected under high pressure into a wellbore to fracture deep rock formations in order to release the flow of natural gas and petroleum in a process call hydraulic fracturing.
Temporary oilfield workers are major factor in increased water use in N. Dakota Bakken region

Increased water use in the rapidly growing oil industry in North Dakota's Bakken oil shale region, or play, is surprisingly due not only to oil well development but also to people, according to a recent study. Increased oil development in that region has attracted thousands of oilfield employees.

May 19, 2016
The EcoSpec reflectance sensors in position among young soybean plants at the beginning of the 2015 growing season. (image courtesy of Yuki Hamada)
Bringing climate down to earth

The EcoSpec Project at Argonne seeks to inject indirect measurements of terrestrial ecosystems into climate models.

May 11, 2016