Argonne National Laboratory

Feature Stories

Date Postedsort ascending
Schematic of the experimental setup. Six YIG/Pt nanowires (in red) integrated in the signal arm (S) are measured in parallel. A bias-T is utilized for simultaneous RF transmission and DC voltage detection by lock-in techniques. (Image adapted from Jungfleisch et al., Nano Lett., 17, 8 (2017).)
Report sheds new insights on the spin dynamics of a material candidate for low-power devices

In a report published in Nano LettersArgonne researchers reveal new insights into the properties of a magnetic insulator that is a candidate for low-power device applications; their insights form early stepping-stones towards developing high-speed, low-power electronics that use electron spin rather than charge to carry information.

May 22, 2017
The researchers integrated X-ray imaging with computer modeling and simulation to characterize zinc oxide nanoparticles, which have attractive electrical properties for use in technologies. Shown above, from left to right, are co-authors Mathew Cherukara, Ross Harder, Haidan Wen and Kiran Sasikumar. (Image by Mark Lopez/Argonne National Laboratory)
X-ray imaging and computer modeling help map electric properties of nanomaterials

Argonne researchers have developed a new approach for studying piezoelectric materials using ultrafast 3-D X-ray imaging and computer modeling. Their integrated approach, reported in Nano Letters, can help us better understand material behavior and engineer more powerful and energy-efficient technologies.

May 4, 2017
Argonne researchers have created skyrmions – ordered regions of magnetic spins – by using a spiraling focused ion beam. (Illustration by Robert Horn / Argonne National Laboratory.)
Skyrmions created with a special spiral

Researchers at Argonne have found a way to control the creation of special textured surfaces, called skyrmions, in magnetically ordered materials.

April 5, 2017
Click to view infographic larger.
Four fantastic materials found at Argonne

New materials are the seeds for new technologies. Here are four discoveries with never-before-seen properties that could lead to new devices, innovations, or breakthroughs.

April 3, 2017
"To take the next step in nanoscience, we need to master reproduction and adaptation. How can we think about making it easier to repair individual units in artificial systems?"
Crowdsource: What will your field of science look like in 50 years?

CROWDSOURCE asks Argonne scientists from different disciplines to each provide a perspective on a complex question. Today we’re asking: What might your field of science look like in 50 years?

April 3, 2017
Scientists have used a new X-ray diffraction technique called Bragg single-angle ptychography to get a clear picture of how planes of atoms shift and squeeze under stress. (Image by Robert Horn/Argonne National Laboratory.)
Single-angle ptychography allows 3D imaging of stressed materials

Scientists have used a new X-ray diffraction technique called Bragg single-angle ptychography to get a clear picture of how planes of atoms shift and squeeze under stress.

March 21, 2017
In a new study, Argonne scientists have discovered a way to confine the behavior of electrons by using extremely high magnetic fields. (Image by Argonne National Laboratory.)
Electrons "puddle" under high magnetic fields, study reveals

In a new study, researchers used extremely high magnetic fields — equivalent to those found in the center of neutron stars — to alter electronic behavior. By observing the change in the behavior of these electrons, scientists may be able to gain an enriched understanding of material behavior.

January 3, 2017
Inside an engine is a harsh place: the intense heat and pressure cause the parts to wear away and break down. But this new coating, which rebuilds itself as soon as it begins to break down, could protect engine parts (and more) for much longer.
9 cool science & tech stories from Argonne in 2016

As 2016 draws to a close, we’re looking back at just a few of the many cool stories that came out of research conducted by Argonne scientists and engineers this year. These discoveries are just a tiny sample of how Argonne researchers help address energy challenges, boost the economy through new discoveries and technologies, and expand scientific knowledge.

December 22, 2016
The Argonne research team that has pioneered the use of machine learning tools in 2-D material modeling. (Image by Wes Agresta/Argonne National Laboratory.)
Machine learning enables predictive modeling of 2-D materials

In a study published in The Journal of Physical Chemistry Letters, a team of researchers led by Argonne computational scientist Subramanian Sankaranarayanan described their use of machine learning tools to create the first atomic-level model that accurately predicts the thermal properties of stanene, a 2-D material made up of a one-atom-thick sheet of tin.

December 7, 2016
Building project managers and scientific leads confer at the site of a new clean room under construction at Argonne National Laboratory. When completed, the lab will enable scientists and engineers to build extremely sensitive detectors — such as those capable of detecting light from the early days of the universe. (Image by Mark Lopez/Argonne National Laboratory.)
Building a room clean enough to make sensors to find light from the birth of the universe

Work is underway at Argonne on an expansion of its “clean room.” The new lab will be specially suited for building parts for ultra-sensitive detectors — such as those to carry out improved X-ray research, or for the South Pole Telescope to search for light from the early days of the universe.

October 17, 2016