Upcoming Events

Improved Diffusion Monte Carlo for Quantum Monte Carlo, Rare Event Simulation, Data Assimilation

August 29, 2013 3:00PM to 4:00PM
Presenter 
Jonathan Weare, The University of Chicago
Location 
Building 240, Room 1404-1405
Type 
Seminar
Series 
LANS Informal Seminar
Abstract:
Diffusion Monte Carlo (DMC) is a workhorse of stochastic computing. It was invented forty years ago as the central component in a Monte Carlo technique for estimating various characteristics of quantum mechanical systems. Since then it has been used in applied in a huge number of fields, often as a central component in sequential Monte Carlo techniques (e.g. the particle filter). DMC computes averages of some underlying stochastic dynamics weighted by a functional of the path of the process. The weight functional could represent the potential term in a Feynman-Kac representation of a partial differential equation (as in quantum Monte Carlo) or it could represent the likelihood of a sequence of noisy observations of the underlying system (as in particle filtering).

DMC alternates between an evolution step in which a collection of samples of the underlying system are evolved for some short time interval, and a branching step in which, according to the weight functional, some samples are copied and some samples are eliminated. Unfortunately for certain choices of the weight functional DMC fails to have a meaningful limit as one decreases the evolution time interval between branching steps. We propose a modification of the standard DMC algorithm. The new algorithm has a lower variance per workload, regardless of the regime considered. In particular, it makes it feasible to use DMC in situations where the "naive" generalization of the standard algorithm would be impractical, due to an exponential explosion of its variance. We numerically demonstrate the effectiveness of the new algorithm on a standard rare event simulation problem (probability of an unlikely transition in a Lennard-Jones cluster), as well as a high-frequency data assimilation problem. We then provide a detailed heuristic explanation of why, in the case of rare event simulation, the new algorithm is expected to converge to a limiting process as the underlying stepsize goes to 0. This is shown rigorously in the simplest possible situation of a random walk, biased by a linear potential. The resulting limiting object, which we call the "Brownian fan," is a very natural new mathematical object of independent interest.