Argonne National Laboratory

Feature Stories

Date Postedsort ascending
The Argonne-led <em>Multiscale Coupled Urban Systems</em> project aims to help city planners better examine complex systems, understand the relationships between them and predict how changes will affect them. The ultimate goal is to help officials identify the best solutions to benefit urban communities. (Image by Argonne National Laboratory.)
Exascale and the city

The Argonne-led Multiscale Coupled Urban Systems project will create a computational framework for urban developers and planners to evaluate integrated models of city systems and processes. With this framework, city planners can better examine complex systems, understand the relationships between them and predict how changes will affect them. It can ultimately help officials identify the best solutions to benefit urban communities.

October 16, 2017
Several of the college students who spent the summer researching at Argonne were from the University of Chicago. They focused on projects related to nuclear energy, ranging from the nuts and bolts of a reactor to education and non-proliferation. (Image by Argonne National Laboratory.)
Demystifying nuclear energy

As part of Argonne’s summer internship program, four college students focused on nuclear energy projects for the laboratory, ranging from the nuts and bolts of a reactor to education and non-proliferation.

October 13, 2017
Recently, 70 scientists — graduate students, computational scientists, and postdoctoral and early-career researchers — attended the fifth annual Argonne Training Program on Extreme-Scale Computing (ATPESC) in St. Charles, Illinois. Over two weeks, they learned how to seize opportunities offered by the world’s fastest supercomputers. (Image by Argonne National Laboratory.)
Leaning into the supercomputing learning curve

Scientists need to learn how to take advantage of exascale computing. This is the mission of the Argonne Training Program on Extreme-Scale Computing (ATPESC), which held its annual two-week training workshops over the summer.

October 6, 2017
In high school, Tavis Reed earned an ACT-SO gold medal for devising a technique, now patent pending, that efficiently produces ethanol. Reed has explored a wide range of research fields, from microbes to batteries, via Argonne’s Student Research Participation Program. (Image by Argonne National Laboratory.)
Stairway to science

The ACT-SO program launches high school student on path to Argonne’s student research program, a provisional patent and the pursuit of degree at Washington University in St. Louis.

October 2, 2017
Argonne and the University of Chicago partnered to help these Chicago high school students study different kinds of alternative energy. (Image by Argonne National Laboratory.)
After-school energy rush

The U.S. Department of Energy’s (DOE) Argonne National Laboratory partnered with the University of Chicago to sponsor “All About Energy,” a six-week program that gives Chicago public high school students an up-close look at careers in science, technology, engineering and mathematics (STEM) and a chance to learn what it means to be a scientist.

September 28, 2017
This shows the HACC cosmology simulation, which combines high spatial and temporal resolution in a large cosmological volume. The high temporal resolution tracks the evolution of structures in great detail and correlates formation histories to the environments in which the structures form. (Image courtesy of Silvio Rizzi and Joe Insley/Argonne Leadership Computing Facility/Argonne National Laboratory.)
Cartography of the cosmos

There are hundreds of billions of stars in our own Milky Way galaxy, interspersed with all manner of matter, from the dark to the sublime. This is the universe that Argonne researcher Salman Habib is trying to reconstruct, structure by structure, combining telescope surveys with next-generation data analysis and simulation techniques currently being primed for exascale computing.

September 25, 2017
This summer, NAISE offered its inaugural summer research program at Argonne for 12 Northwestern undergraduate science and engineering majors. Here, Jordan Fleming examines a sensor from Argonne’s Array of Things project, while Ethan Trokie and Renee Zha work in the background. (Image by Argonne National Laboratory.)
Sensing their way to the future

The Northwestern Institute of Science and Engineering this summer offered its inaugural summer research program for 12 undergraduate science and engineering majors. During the 10-week program, the students worked on projects of mutual strategic importance to Argonne and the university in machine learning, environmental sensing, synthetic biology, materials synthesis and characterization, and energy storage.

September 20, 2017
University of Minnesota Engineering Professor Joe Nichols is working with the Argonne Leadership Computing Facility to create high-fidelity computer simulations to determine how jet turbulence produces noise. (Image courtesy of University of Minnesota.)
The Sublime Challenge of Jet Noise

Joe Nichols, of the University of Minnesota, is using ALCF resources to create high fidelity simulations of jet turbulence to determine how and where noise is produced. The results may lead to novel engineering designs that reduce noise over commercial flight paths and on aircraft carrier decks.

September 18, 2017
Argonne Neuroscientist  Bobby Kasthuri is using Argonne’s supercomputer to map the intricacies of brain function at the deepest levels. (Image by Argonne National Laboratory.)
Small Brain, Big Data

Using a multi-lab approach, Argonne researchers are tapping the laboratory’s vast arsenal of innovative technologies to map the intricacies of brain function at the deepest levels, and describing them in greater detail than ever before through advanced data analysis techniques. The brain connectome project is supported by the Argonne Leadership Computing Facility’s new Data Science Program, a new initiative targeted at big data problems.

September 11, 2017
In August, nearly two dozen seventh and eighth grade girls learned about the importance of computer programming at Argonne National Laboratory. (Image by Argonne National Laboratory.)
Middle school girls on a coding mission

The two-day “CodeGirls at Argonne” camp seeks to immerse the girls in computer science before they enter high school. The camp helps break down the typical stereotype of coding being a solitary and male activity. At Argonne, computer scientists work as part of interdisciplinary teams that focus on solving problems.

September 8, 2017