Argonne National Laboratory

Feature Stories

Date Postedsort ascending
Scientists have used a new X-ray diffraction technique called Bragg single-angle ptychography to get a clear picture of how planes of atoms shift and squeeze under stress. (Image by Robert Horn/Argonne National Laboratory.)
Single-angle ptychography allows 3D imaging of stressed materials

Scientists have used a new X-ray diffraction technique called Bragg single-angle ptychography to get a clear picture of how planes of atoms shift and squeeze under stress.

March 21, 2017
In a new study, Argonne scientists have discovered a way to confine the behavior of electrons by using extremely high magnetic fields. (Image by Argonne National Laboratory.)
Electrons "puddle" under high magnetic fields, study reveals

In a new study, researchers used extremely high magnetic fields — equivalent to those found in the center of neutron stars — to alter electronic behavior. By observing the change in the behavior of these electrons, scientists may be able to gain an enriched understanding of material behavior.

January 3, 2017
The Argonne research team that has pioneered the use of machine learning tools in 2-D material modeling. (Image by Wes Agresta/Argonne National Laboratory.)
Machine learning enables predictive modeling of 2-D materials

In a study published in The Journal of Physical Chemistry Letters, a team of researchers led by Argonne computational scientist Subramanian Sankaranarayanan described their use of machine learning tools to create the first atomic-level model that accurately predicts the thermal properties of stanene, a 2-D material made up of a one-atom-thick sheet of tin.

December 7, 2016
Building project managers and scientific leads confer at the site of a new clean room under construction at Argonne National Laboratory. When completed, the lab will enable scientists and engineers to build extremely sensitive detectors — such as those capable of detecting light from the early days of the universe. (Image by Mark Lopez/Argonne National Laboratory.)
Building a room clean enough to make sensors to find light from the birth of the universe

Work is underway at Argonne on an expansion of its “clean room.” The new lab will be specially suited for building parts for ultra-sensitive detectors — such as those to carry out improved X-ray research, or for the South Pole Telescope to search for light from the early days of the universe.

October 17, 2016
No one has yet imaged an entire brain down to the level of individual cells; but Bobby Kasthuri has a plan to do just that using intensive computing and imaging resources at Argonne. Above is a simulation showing an unusual configuration of a neuron: one axon (blue) connected to multiple points on a dendrite (green). The total image is smaller than the diameter of a single human hair. (Click to view larger.)
Adventures of the first neuroscientist at Argonne

Bobby Kasthuri wants to map the human brain. Unlike most brain researchers, he wants a literal map: a 3D picture of every single neuron inside a brain. All 100 billion of them — or maybe 80 billion. Or maybe 120 billion?

March 16, 2016
"We’re spending a lot of power to reduce the frequency of error. What if you built a system that makes mistakes much more frequently but uses much less energy?" - Marc Snir, director of Argonne's mathematics & computer science division
Crowdsource: How do we make computers faster?

Five Argonne scientists with very different specialties answer the same question: "How do we make computers faster?"

March 7, 2016
Argonne engineer Aaron Greco works to improve the reliability of wind turbines using tribology. (Click to view larger.)
7 things you might not know about tribology

Objects rubbing together cause friction which eventually wears down one or the other surface. Finding ways to reduce this friction—in your knees, in an engine, or in factory machinery—can help scientists develop stronger materials that last longer and slide easier, which increases efficiency.

March 7, 2016
Researchers used intense X-rays at the Advanced Photon Source to study how the bombardier beetle sprays hot, caustic chemicals when threatened. Top: The bombardier beetle can aim its noxious spray from two separate rear glands. Bottom: This colored scanning electron microscope image shows the structure of the two glands. To protect the beetle’s insides, the chambers holding the chemicals are lined with a thick layer of protective cuticle, shown in brown. Areas with less cuticle—and more flexibility—are shown in blue. The white arrow identifies the reaction chamber; the purple arrow shows the junction between the reaction chamber and the exit channel; and the yellow arrow points out the exit channel dorsal membrane. (Click to view larger.)
10 cool science and technology stories from Argonne in 2015

As 2015 draws to a close, we’re looking back at some of the coolest stories that came out of research conducted by Argonne scientists and engineers this year.

December 23, 2015
INCREASE members visited Argonne’s Advanced Photon Source to network and learn how to submit competitive proposals for their research. (Click image to enlarge.)
Keys to Access: Argonne-INCREASE partnership opens doors to collaboration

Argonne hosted 34 members of the Interdisciplinary Consortium for Research and Education and Access in Science and Engineering (INCREASE) group for a two day workshop.

October 27, 2015
Argonne researcher Yuelin Li holds a sample holder containing a single gold nanorod in water. Li and colleagues discovered that nanorods melt in three distinct phases when grouped in large ensembles. Their research will inform the creation of next-generation technologies such as water purification systems, battery materials and cancer research. Photo by Mark Lopez/Argonne National Laboratory. (Click to enlarge.)
Shape-shifting groups of nanorods release heat differently

Researchers at Argonne have revealed previously unobserved behaviors that show how the transfer of heat at the nanoscale causes nanoparticles to change shape in groups.

February 18, 2015