Argonne National Laboratory

Feature Stories

Date Postedsort ascending
Building project managers and scientific leads confer at the site of a new clean room under construction at Argonne National Laboratory. When completed, the lab will enable scientists and engineers to build extremely sensitive detectors — such as those capable of detecting light from the early days of the universe. (Image by Mark Lopez/Argonne National Laboratory.)
Building a room clean enough to make sensors to find light from the birth of the universe

Work is underway at Argonne on an expansion of its “clean room.” The new lab will be specially suited for building parts for ultra-sensitive detectors — such as those to carry out improved X-ray research, or for the South Pole Telescope to search for light from the early days of the universe.

October 17, 2016
No one has yet imaged an entire brain down to the level of individual cells; but Bobby Kasthuri has a plan to do just that using intensive computing and imaging resources at Argonne. Above is a simulation showing an unusual configuration of a neuron: one axon (blue) connected to multiple points on a dendrite (green). The total image is smaller than the diameter of a single human hair. (Click to view larger.)
Adventures of the first neuroscientist at Argonne

Bobby Kasthuri wants to map the human brain. Unlike most brain researchers, he wants a literal map: a 3D picture of every single neuron inside a brain. All 100 billion of them — or maybe 80 billion. Or maybe 120 billion?

March 16, 2016
"We’re spending a lot of power to reduce the frequency of error. What if you built a system that makes mistakes much more frequently but uses much less energy?" - Marc Snir, director of Argonne's mathematics & computer science division
Crowdsource: How do we make computers faster?

Five Argonne scientists with very different specialties answer the same question: "How do we make computers faster?"

March 7, 2016
Argonne engineer Aaron Greco works to improve the reliability of wind turbines using tribology. (Click to view larger.)
7 things you might not know about tribology

Objects rubbing together cause friction which eventually wears down one or the other surface. Finding ways to reduce this friction—in your knees, in an engine, or in factory machinery—can help scientists develop stronger materials that last longer and slide easier, which increases efficiency.

March 7, 2016
Researchers used intense X-rays at the Advanced Photon Source to study how the bombardier beetle sprays hot, caustic chemicals when threatened. Top: The bombardier beetle can aim its noxious spray from two separate rear glands. Bottom: This colored scanning electron microscope image shows the structure of the two glands. To protect the beetle’s insides, the chambers holding the chemicals are lined with a thick layer of protective cuticle, shown in brown. Areas with less cuticle—and more flexibility—are shown in blue. The white arrow identifies the reaction chamber; the purple arrow shows the junction between the reaction chamber and the exit channel; and the yellow arrow points out the exit channel dorsal membrane. (Click to view larger.)
10 cool science and technology stories from Argonne in 2015

As 2015 draws to a close, we’re looking back at some of the coolest stories that came out of research conducted by Argonne scientists and engineers this year.

December 23, 2015
INCREASE members visited Argonne’s Advanced Photon Source to network and learn how to submit competitive proposals for their research. (Click image to enlarge.)
Keys to Access: Argonne-INCREASE partnership opens doors to collaboration

Argonne hosted 34 members of the Interdisciplinary Consortium for Research and Education and Access in Science and Engineering (INCREASE) group for a two day workshop.

October 27, 2015
Argonne researcher Yuelin Li holds a sample holder containing a single gold nanorod in water. Li and colleagues discovered that nanorods melt in three distinct phases when grouped in large ensembles. Their research will inform the creation of next-generation technologies such as water purification systems, battery materials and cancer research. Photo by Mark Lopez/Argonne National Laboratory. (Click to enlarge.)
Shape-shifting groups of nanorods release heat differently

Researchers at Argonne have revealed previously unobserved behaviors that show how the transfer of heat at the nanoscale causes nanoparticles to change shape in groups.

February 18, 2015
Argonne researchers produce trace amounts of hydrogen with visible light by merging light-collecting proteins from a single-celled organism with a graphene platform. Both graphene and protein absorb the light and re-direct electrons towards the titanium dioxide. Electrons interact with protons at the site of the platinum nanoparticles to produce hydrogen. Credit: John Lambert. (Click image to enlarge)
A nanosized hydrogen generator

Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have created a small scale “hydrogen generator” that uses light and a two-dimensional graphene platform to boost production of the hard-to-make element.

September 19, 2014
"This new method gives a way of delivering the dose of therapeutic cargo much more directly, which will enable us to have the same overall effect with a lower total dose, reducing the unpleasant and dangerous side effects of chemotherapy," said oncologist Ezra Cohen, an author of the study. Click to enlarge.
New nanotech invention improves effectiveness of the 'penicillin of cancer'

By combining magnetic nanoparticles with one of the most common and effective chemotherapy drugs, Argonne researchers have created a way to deliver anti-cancer drugs directly into the nucleus of cancer cells.

August 13, 2014
A recent Argonne study has called into question the existence of silicene, thought to be one of the world’s newest and hottest two-dimensional nanomaterials. Pictured are researchers (clockwise from bottom left) Nathan Guisinger, Andrew J. Mannix, Brian Kiraly and Brandon L. Fisher. Photo credit: Wes Agresta, Argonne National Laboratory. Click image to enlarge.
Silicene: To be or not to be?

A recent study at Argonne National Laboratory has called into question the existence of silicene, thought to be one of the world’s newest and hottest two-dimensional nanomaterials. The study may have great implications to a multi-billion dollar electronics industry that seeks to revolutionize technology at scales 80,000 times smaller than the human hair.

July 24, 2014