Argonne National Laboratory

Press Releases

Date Postedsort ascending
Argonne, the University of Chicago and Fermilab are launching an intellectual hub called the Chicago Quantum Exchange to advance academic, industrial and governmental efforts in the science and engineering of quantum information. Above: An illustration of a blinking quantum dot in its 'on’ state. (Image courtesy of Nicholas Brawand).
Chicago Quantum Exchange to create technologically transformative ecosystem

The University of Chicago is collaborating with the U.S. Department of Energy’s Argonne National Laboratory and Fermi National Accelerator Laboratory to launch an intellectual hub for advancing academic, industrial and governmental efforts in the science and engineering of quantum information.

June 20, 2017
Argonne will work with ThermoAura Inc., of Colonie, NY, to improve the performance of commercially manufactured thermoelectric materials, one of seven new partnerships announced through the Department of Energy’s Small Business Voucher program. Higher performing thermoelectrics could improve the efficiency of air conditioning systems. (Image by Shutterstock/Artur Bogacki)
Seven small businesses to collaborate with Argonne to solve technical challenges

Seven small businesses have been selected to collaborate with researchers at Argonne to address technical challenges as part of DOE’s Small Business Vouchers Program.

May 31, 2017
More than 400 scientific users of the Advanced Photon Source and Center for Nanoscale Materials, above, start their annual meeting today at Argonne. (Image by Argonne National Laboratory.)
Argonne welcomes scientists to Advanced Photon Source and Center for Nanoscale Materials

More than 400 researchers from numerous disciplines will convene at Argonne today for the annual Users’ Meeting for the Advanced Photon Source and Center for Nanoscale Materials.

May 8, 2017
Cross-section scanning electron microscopy image after hydrogen silsesquioxane patterning, sequential infiltration synthesis and removal of initiated chemical vapor deposition topcoat and organic components. (Image by Hyo Seon Suh / University of Chicago
Self-assembling polymers provide thin nanowire template

In a recent study, a team of researchers from Argonne, the University of Chicago and MIT has developed a new way to create some of the world’s thinnest wires, using a process that could enable mass manufacturing with standard types of equipment.

April 11, 2017
Argonne postdoctoral researcher Ed Barry wrings out a sheet of Oleo Sponge during tests at Argonne. Photo by Mark Lopez/Argonne National Laboratory; click to view larger.
Argonne invents reusable sponge that soaks up oil, could revolutionize oil spill and diesel cleanup

Scientists at Argonne have invented a new foam, called Oleo Sponge, that not only easily adsorbs spilled oil from water, but is also reusable and can pull dispersed oil from the entire water column—not just the surface.

March 6, 2017
The NekCEM/Nek5000: Release 4.0: Scalable High-Order Simulation Codes, a set of codes developed by  Argonne researcher Misun Min and Paul Fischer with the University of Illinois at Urbana-Champaign,  won a 2016 R&D100 award. (Argonne National Laboratory)
Argonne researchers win three 2016 R&D 100 Awards

Innovative technologies developed by researchers at Argonne and their partners earned three 2016 R&D 100 Awards.

November 8, 2016
The collaboration between Argonne and Kyma Technologies will center on the development of advanced semiconductor devices for application in photovoltaics (pictured), advanced power electronics, optoelectronics and solid-state lighting. (Image by Franco Lucato/Shutterstock)
Argonne and Kyma Technologies win spot in second cohort of Technologist In Residence Program

A collaboration between Argonne National Laboratory and Kyma Technologies focusing on advanced semiconductor devices has earned a spot in the second cohort of DOE’s Technologist In Residence (TIR) Program.

October 6, 2016
A new study by Argonne researchers determined that magnetic skyrmions – small electrically uncharged circular structures with a spiraling magnetic pattern – do get deflected by an applied current, much like a curveball getting deflected by air. (Photo by Mark Lopez, Argonne National Laboratory)
Argonne ahead of the “curve” in magnetic study

In a new study by Argonne researchers, scientists noticed that magnetic skyrmions – small electrically uncharged circular structures with a spiraling magnetic pattern – do get deflected by an applied current, much like a curveball gets deflected by airflow.

September 21, 2016
Former Argonne postdoctoral researcher Diana Berman and Argonne nanoscientist Anirudha Sumant, along with several collaborators, developed a new and inexpensive way to grow pure graphene using a diamond substrate. (Wes Agresta/Argonne National Laboratory)
Diamond proves useful material for growing graphene

A team has developed a method to grow graphene that contains relatively few impurities, and costs less to make, in a shorter time and at lower temperatures compared to the processes widely used to make graphene today.

September 16, 2016
A new study from Argonne National Laboratory has shown water can serve a previously undiscovered role to help micelles coalesce to spontaneously form long fibers. The study could help scientists to understand how light-harvesting molecules are incorporated into the micelle fiber as it assembles, which would be a key step to understanding some forms of artificial photosynthesis. (Image courtesy of Robert Horn/Argonne National Laboratory.)
Water helps assembly of biofibers that could capture sunlight

A new study from Argonne National Laboratory has shown water can serve a previously undiscovered role to help micelles coalesce to spontaneously form long fibers. The study could help scientists to understand how light-harvesting molecules are incorporated into the micelle fiber as it assembles, which would be a key step to understanding some forms of artificial photosynthesis.

September 12, 2016