Press Releases

Date Postedsort descending
This wafer of nanocrystalline diamond provides one example of the technology that AKHAN Technologies has licensed from Argonne. To view a larger version of the image, click on it.

Photo courtesy Ani Sumant.
Argonne licenses diamond semiconductor discoveries to AKHAN Technologies

Argonne announced today that the laboratory has granted AKHAN Technologies exclusive diamond semiconductor application licensing rights to breakthrough low-temperature diamond deposition technology developed by the lab's Center for Nanoscale Materials.

March 4, 2013
Argonne postdoc Kate Ryan, recipient of an Early Career Research Award from the Department of Energy, studies lithium-air batteries, which may replace lithium-ion as the next generation of batteries for cell phones, laptops and cars.To view a larger version of the image, click on it.
Argonne a top place to work for postdocs in 2013

For the third year in a row, the U.S. Department of Energy’s (DOE) Argonne National Laboratory is one of the 10 best places to work as a postdoctoral researcher, according to The Scientist magazine’s annual survey.

April 16, 2013
Gold nanoparticles self-assemble into long chains when bombarded with electrons. To view a larger version of the image, click on it.
Scientists see nanoparticles form larger structures in real time

In a new study performed at the Center for Nanoscale Materials at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, researchers have for the first time seen the self-assembly of nanoparticle chains in situ, that is, in place as it occurs in real-time.

April 19, 2013
Graphene's hexagonal structure makes it an excellent lubricant. To view a larger version of the image, click on it.
Graphene layers dramatically reduce wear and friction on sliding steel surfaces

Scientists at Argonne National Laboratory have recently discovered that they could substitute one-atom-thick graphene layers for oil-based lubricants on sliding steel surfaces, enabling a dramatic reduction in the amount of wear and friction.

April 25, 2013
Because of their potential to reduce costs for both fabrication and materials, organic photovoltaics could be much cheaper to manufacture than conventional solar cells and have a smaller environmental impact as well. To view a larger version of the image, click on it.
Scientists detect residue that has hindered efficiency of promising type of solar cell

Argonne researchers have for the first time been able to detect trace residues of catalyst material on organic photovoltaics.

May 3, 2013
Postdoctoral researchers Marvin Cummings (at right) and Nozomi Shirato adjust the microscope before an experiment. To view a larger version of the image, click on it.
Scientists combine X-rays and microscopes for precise experiments

By pairing the capabilities of X-ray analysis and extremely precise microscopy, scientists at Argonne have developed a way to simultaneously determine the physical structure and chemical makeup of materials at close to the atomic level.

June 13, 2013
Jeff Elam (left) and Anil Mane’s work in nanocomposite charge drain coatings represents a significant breakthrough in Argonne's efforts to develop microelectromechanical systems, or MEMS. To view a larger version of the image, click on it.
Argonne claims four 2013 R&D 100 Awards

Four innovative technologies have won 2013 R&D 100 Awards, regarded as the “Oscars of invention,” for the U.S. Department of Energy’s Argonne National Laboratory.

July 8, 2013
The pink color of salt lakes is caused by salt-loving microorganisms, called halobacteria. To view a larger version of the image, click on it.
Microorganisms found in salt flats could offer new path to green hydrogen fuel

A protein found in the membranes of ancient microorganisms that live in desert salt flats could offer a new way of using sunlight to generate environmentally friendly hydrogen fuel, according to a new study by researchers at the U.S. Department of Energy’s Argonne National Laboratory.

July 16, 2013
Argonne honors employees for outstanding performance

The UChicago Argonne, LLC, Board of Governors honors employees of Argonne National Laboratory for their distinguished performance, outstanding service to the laboratory, excellence in safety leadership, and education and academic scholarship.

August 15, 2013
In order to understand how complex materials merge at the boundary, scientists look at cross-sections of an oxide superlattices. In this picture, peaks correspond to layers of cuprate superconductor and valleys to metallic manganites (bottom region). The power of scanning tunneling microscopy allows researchers to gain insight into both the material's topography as well as its electronic properties. Click to enlarge.
A material's multiple personalities

Just like people, materials can sometimes exhibit “multiple personalities.” This kind of unusual behavior in a certain class of materials has compelled researchers at the U.S. Department of Energy’s Argonne National Laboratory to take a closer look at the precise mechanisms that govern the relationships between superconductivity and magnetism.

September 11, 2013