Press Releases

Date Postedsort ascending
Scientists from Argonne created the world’s thinnest flexible, transparent thin-film transistor, which could one day be useful in making a truly flexible display screen for TVs or phones. From left: Andreas Roelofs, Anirudha Sumant, and Richard Gulotty; in foreground, Saptarshi Das. Photo by Mark Lopez/Argonne National Laboratory. Click to enlarge.
Flexible, transparent thin film transistors raise hopes for flexible screens

The electronics world has been dreaming for half a century of the day you can roll a TV up in a tube. But scientists got one step closer last month when researchers at Argonne reported the creation of the world’s thinnest flexible, see-through 2-D thin film transistors.

May 23, 2014
Argonne scientists in collaboration with researchers from Arizona State University have found a way to imitate Photosystem II, the first protein complex in the long chain of reactions that use energy from the sun to create usable fuel. Click to enlarge.
Photosynthesis, reimagined

Scientists at the U.S. Department of Energy's Argonne National Laboratory in collaboration with researchers from Arizona State University have found a way to imitate Photosystem II, the first protein complex in the long chain of reactions that use energy from the sun to create usable fuel.

March 27, 2014
Atomic carbon (black spheres) is evaporated at over 2,300 degrees Celcius and deposited on a silver platform where flakes of graphene form. Lighter-colored regions correspond to graphene growth and silver is depicted in the darker regions. Click to enlarge.
Silver linings: Argonne scientists are first to grow graphene on silver

Researchers discover a new method to growing graphene on silver opening the door to new physics and device applications.

February 24, 2014
Typically, the process of corrosion has been studied from the metal side of the equation. Click to enlarge.
The core of corrosion

Most times, the effects of corrosion are studied with regard to the metal surface. In a new study, researchers looked at the effects that corrosion has on the water and dissolved ions doing the corroding.

February 14, 2014
Argonne materials scientists announced a new technique to grow these little forests at the microscale (the scale shows 100 micrometers, which is about the diameter of a single human hair). Image by Arnaud Demortière, Alexey Snezhko and Igor Aronson. Click to enlarge.
Good hair day: New technique grows tiny 'hairy' materials at the microscale

Scientists at Argonne attacked a tangled problem by developing a new technique to grow tiny “hairy” materials that assemble themselves at the microscale.

January 31, 2014
Most simple solar cells handle the bluish hues of the electromagnetic spectrum inefficiently. This is because blue photons — incoming particles of light that strike the solar cell — actually have excess energy that a conventional solar cell can’t capture. Click to enlarge.
New solar cell technology captures high-energy photons more efficiently

Scientists at Argonne and the University of Texas at Austin have together developed a new, inexpensive material that has the potential to capture and convert solar energy — particularly from the bluer part of the spectrum — much more efficiently than ever before.

January 23, 2014
Currently, the most efficient methods we have for making fuel – principally, hydrogen – from sunlight and water involve rare and expensive metal catalysts, such as platinum. Click to enlarge.
Cobalt catalysts allow researchers to duplicate the complicated steps of photosynthesis

In a new study, Argonne researchers have used cobalt catalysts to duplicate the steps in the complicated electronic dance of photosynthesis.

January 13, 2014
Tijana Rajh is a senior scientist and group leader for the nanobio research interface group within Argonne's Center for Nanoscale Materials. Click to enlarge.
Argonne scientists Rajh, Soderholm and Segre named AAAS fellows

Physical chemist Tijana Rajh, chemist Lynda Soderholm and physicist Carlo Segre of the U.S. Department of Energy’s Argonne National Laboratory have been named fellows of the American Association for the Advancement of Science.

December 6, 2013
In order to understand how complex materials merge at the boundary, scientists look at cross-sections of an oxide superlattices. In this picture, peaks correspond to layers of cuprate superconductor and valleys to metallic manganites (bottom region). The power of scanning tunneling microscopy allows researchers to gain insight into both the material's topography as well as its electronic properties. Click to enlarge.
A material's multiple personalities

Just like people, materials can sometimes exhibit “multiple personalities.” This kind of unusual behavior in a certain class of materials has compelled researchers at the U.S. Department of Energy’s Argonne National Laboratory to take a closer look at the precise mechanisms that govern the relationships between superconductivity and magnetism.

September 11, 2013
Argonne honors employees for outstanding performance

The UChicago Argonne, LLC, Board of Governors honors employees of Argonne National Laboratory for their distinguished performance, outstanding service to the laboratory, excellence in safety leadership, and education and academic scholarship.

August 15, 2013