Argonne National Laboratory

Press Releases

Date Postedsort ascending
These are surface SEM images of Janus membrane front faces grown with 150, 200 and 300 cycles at .015, .06 and .15 second exposures. A general trend of quicker nucleation and following onset of conformal growth is observed at higher exposure doses and more cycles. This electron microscope image was taken on Carl Zeiss Merlin SEM at the University of Chicago. (Image courtesy of the University of Chicago.)
Two faces offer limitless possibilities

Named for the mythical god with two faces, Janus membranes — double-sided membranes that serve as gatekeepers between two substances — have emerged as a material with potential industrial uses.

July 19, 2018
Argonne scientists started with a new hetero-structure consisting of a reconfigurable artificial-spin-ice nanostructure on top of a superconducting thin film.
Taming tornadoes at the nanoscale

Argonne scientists help design a reconfigurable superconductor with nanoscale magnets.

June 12, 2018
This shows the reaction mechanism for converting hydrogen fluoride (HF) impurity from the electrolyte into lithium fluoride (LiF) in the solid-electrolyte interphase (SEI) with release of hydrogen gas (H<sub>2</sub>). The SEI layer is shown on a substrate of gold (Au) atoms, which serves as a simplified model system. Scientists determined this mechanism using advanced computational methods (density functional theory and molecular dynamics simulations). (Image by Argonne National Laboratory.)
Battery’s hidden layer revealed

An international team led by Argonne National Laboratory makes breakthrough in understanding the chemistry of the microscopically thin layer that forms between the liquid electrolyte and solid electrode in lithium-ion batteries. The results are being used in improving the layer and better predicting battery lifetime.

April 17, 2018
Argonne researchers and their collaborators sought to understand what happens when an electron is injected into water. They found that the electron binds with the water; however, its binding energy is much smaller than previously thought. (Image courtesy of Peter Allen/Institute for Molecular Engineering.)
Electrons in the water

Scientists have been able to experimentally measure the electron affinity of water, determining what happens to an electron when it is injected into water. The result has importance for photochemical cells and may force scientists to a reexamine certain theories about electronic binding energy.

January 19, 2018
Materials scientists at Argonne National Laboratory synthesized single crystals of a metallic trilayer nickelate compound, which shows similarities to a technologically valuable class of materials called high-temperature superconductors – and with the right ingredients, could potentially become one. Above: The crystal structure of such a compound. (Image credit: Zhang et. al, published in <em>Nature Physics</em>.)
Nickel for thought: Compound shows potential for high-temperature superconductivity

Argonne researchers have identified a nickel oxide compound as an unconventional but promising candidate material for high-temperature superconductivity. The project combined crystal growth, X-ray spectroscopy and computational theory.

June 16, 2017
Argonne chemists Dugan Hayes, Lin Chen, and Ryan Hadt have identified a rapid electronic process that could aid the water-splitting reaction in cobalt-containing catalysts.  Cobalt catalysts are relatively inexpensive and could replace more expensive precious metal catalysts in the production of clean energy, most notably solar fuels. (Image by Argonne National Laboratory.)
Chemical “dance” of cobalt catalysis could pave way to solar fuels

In a new study, scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and Harvard University have been able to see for the first time an especially important chemical step in the process of splitting water into hydrogen and oxygen – the basic reaction at the heart of creating entirely renewable fuels from solar energy.

June 2, 2017
Argonne chemist Max Delferro has developed an unusually active form of vanadium for hydrogenation reactions.  Vanadium an inexpensive common metal that could replace some of the precious metals currently found in catalysts used in these reactions, frequently used in processing of petrochemicals. (Image by Argonne National Laboratory.)
Argonne scientists make vanadium into a useful catalyst for hydrogenation

In a new study, Argonne chemist Max Delferro boosted and analyzed the unprecedented catalytic activity of an element called vanadium for hydrogenation – a reaction that is used for making everything from vegetable oils to petrochemical products to vitamins.

May 25, 2017
Snapshots of the 3-D structure of iron nanoparticles in the course of the oxidation process, captured through large-scale reactive molecular dynamic simulations. These simulations enhance our understanding of processes like oxidation and corrosion, and build a foundation for developing integrated imaging techniques to control or manipulate these types of reactions. (Image by Yugang Sun, Xiaobing Zuo, Subramanian Sankaranarayanan, Sheng Peng, Badri Narayanan and Ganesh Kamath, Argonne National Laboratory/Temple University.)
New study reveals the mystery behind the formation of hollowed nanoparticles during metal oxidation

In a newly published Science paper, Argonne and Temple University researchers by integrated X-ray imaging and computer modeling and simulation to reveal new knowledge about the behavior of metal nanoparticles when they undergo oxidation. This knowledge adds to our understanding of fundamental processes like oxidation and corrosion.

April 21, 2017
Argonne researchers are the first to capture the formation of nanomaterial defects in near-real time. Their work will help other researchers model the behavior of materials, a step that is key to engineering stronger, more reliable materials. (Image by Mark Lopez/Argonne National Laboratory.)
For first time ever, X-ray imaging at Argonne captures material defect process

Researchers at Argonne have discovered a new approach to detail the formation of material defects at the atomic scale and in near-real time, an important step that could assist in engineering better and stronger new materials.

January 16, 2017
A new study by Argonne researchers determined that magnetic skyrmions – small electrically uncharged circular structures with a spiraling magnetic pattern – do get deflected by an applied current, much like a curveball getting deflected by air. (Photo by Mark Lopez, Argonne National Laboratory)
Argonne ahead of the “curve” in magnetic study

In a new study by Argonne researchers, scientists noticed that magnetic skyrmions – small electrically uncharged circular structures with a spiraling magnetic pattern – do get deflected by an applied current, much like a curveball gets deflected by airflow.

September 21, 2016