Press Releases

Date Postedsort ascending
Novel intermediate energy X-ray beamline opening for researchers

Researchers working to create innovative electronic systems and to understand the fundamental properties of magnetism and electronics to tackle grand challenges such as quantum computing have an new tool in their arsenal.

November 20, 2015
The Binary Pseudo-Random Calibration Tool provides the highest resolution ever achieved, 1.5 nanometers, and is used to characterize all advanced imaging systems from interferometers to electron microscopes. Pictured is lithographically produced BPR grating for investigating interferometers.
Argonne researchers win two R&D 100 Awards

Innovative technologies developed by researchers at Argonne and their partners earned two 2015 R&D 100 Awards.

November 16, 2015
Occidental College researcher Janet Scheel will use Argonne Leadership Computing Facility resources for her 2016 INCITE project “Convective Turbulence in Liquid Gallium and Sodium.” This image displays streamlines of the two-dimensional skin friction field that was obtained right at the heated bottom plate of a cylindrical cell for turbulent Rayleigh-Bénard convection in liquid mercury at a Rayleigh number of a hundred million. The field displays the complex dynamics of the velocity field. (Image credit: Joerg Schumacher, Technische Universitaet Ilmenau)
INCITE grants awarded to 56 computational research projects

The U.S. Department of Energy has announced 56 projects aimed at accelerating discovery and innovation to address some of the world’s most challenging scientific questions. The projects will share 5.8 billion core hours on America’s two most powerful supercomputers dedicated to open science.

November 13, 2015
In this artistic rendering, a magnetic pulse (right) and X-ray laser light (left) converge on a high-temperature superconductor to study the behavior of its electrons. (Courtesy SLAC National Accelerator Laboratory) (Click image to enlarge.)
An unprecedented blend of intense magnetic and X-ray laser pulses produces surprising 3D effect

A team led by scientists at SLAC National Accelerator Laboratory combined powerful magnetic pulses with some of the brightest X-rays on the planet to discover a surprising 3D arrangement of a material’s electrons that appears closely linked to a mysterious phenomenon known as high-temperature superconductivity.

November 5, 2015
Scientists determined the structures of several important tuberculosis enzymes, which could lead to new drugs for the disease. Above: An image of the mycobacterium IMPDH complex when it is attached to IMP and the inhibitor MAD1. Courtesy Youngchang Kim/Argonne National Laboratory. Click to view larger.
Study reveals structure of tuberculosis enzyme, could offer drug target

A team of scientists, including several from Argonne, have determined the structures of several important tuberculosis enzymes, which could lead to new drugs for the disease.

November 2, 2015
U.S. scientists — including microbiologists, physicists, chemists and physicians — announce the creation of the Unified Microbiome Initiative (UMI), an interdisciplinary group that will coordinate areas of microbial research and make funding recommendations to federal agencies, private foundations, and corporate partners.
Scientists call for unified initiative to advance microbiome research

Leading scientists have formed a unified initiative to support basic research, technological development, and commercial applications to better understand and harness the capabilities of Earth’s vast systems of microorganisms.

October 28, 2015
A schematic representation of the edge-terminated MoS2 on glassy carbon electrode (click image to enlarge)
Promising technique improves hydrogen production of affordable alternative to platinum

Microwave heat improves nanostructured molybdenum disulfide catalyst's ability to produce hydrogen.

October 26, 2015
The <em>Corynebacterium diphtheria</em> MdbA enzyme’s thiol-disulfide oxidoreductase fold is shown as arrows and two flanking helices in the lower part of the image. Protein components of the enzyme’s active site are depicted as spheres. The electrostatic potentials across the surface of the molecule are shown as semitransparent features, with blue and red shading representing positive and negative potentials, respectively. (Click image to enlarge.)
Studies reveal a unified approach to combating several bacterial diseases

Researchers have discovered structural similarities among bacteria of various types that create the possibility of short-circuiting the infections they cause in similar ways.

October 20, 2015
A team of researchers from Argonne’s Materials Science Division and Northern Illinois University, working with researchers at Argonne’s Center for Nanoscale Materials, report two new findings on tungsten ditelluride: (1) WTe2 is electronically three-dimensional with a mass anisotropy as low as 2, and (2) the mass anisotropy varies with temperature and follows the magnetoresistance behavior of the Fermi liquid state. The results not only provide a general scaling approach for the anisotropic magnetoresistance but also are crucial for correctly understanding the electronic properties of WTe2, including the origin of the remarkable “turn-on” behavior in the resistance versus temperature curve, which has been widely observed in many materials and assumed to be a metal-insulator transition. (Click image to enlarge.)
Scientists gain insight into origin of tungsten ditelluride's magnetoresistance

Two new significant findings may move scientists closer to understanding the origins of tungsten ditelluride's extremely large magnetoresistance, a key characteristic in modern electronic devices such as magnetic hard drives and sensors.

October 19, 2015
Argonne studies show that shale oil production generates greenhouse gas emissions at levels similar to those of traditional crude oil production.
Analysis shows greenhouse gas emissions similar for shale, crude oil

Argonne has released a pair of studies on the efficiency of shale oil production excavation. The reports show that shale oil production generates greenhouse gas emissions at levels similar to traditional crude oil production.

October 15, 2015