Argonne National Laboratory

Press Releases

Date Postedsort ascending
Researchers will use an ARPA-E award to construct data sets to model electric grids representing several regions. They will use information about population density, land usage and industrial and commercial energy consumption patterns to estimate demand for electricity in a city or region. Also included will be information about where transmission lines are connected, the electrical properties of those lines, where generators are located and what their capabilities are.
Research projects will help optimize grid

Argonne will participate in three projects that recently received multiyear, multimillion-dollar awards from DOE’s Advanced Research Projects Agency-Energy to develop new computer algorithms to optimize the grid and to develop accurate models on which to test those algorithms.

January 27, 2016
Comparison between experimental and calculated strain distributions in the hydrogen-poor phase. The strains are consistent with a trapped hydrogen-rich surface layer. Middle: Comparison between experimental and calculated strain distributions in the hydrogen-rich phase. The strains are dominated by elastic effects. Right: The time correlations in the displacement field that show evidence of aging and avalanching during the phase transformation.
Hydrogen uptake causes molecular “avalanches” in palladium

Unlike any other element, palladium takes up hydrogen at room temperature and pressure. Argonne scientists have gained new insight into how this uptake of hydrogen occurs, realized how it impacts the atomic structure of the palladium, and identified key properties of how this form of hydrogen storage could work in the future.

January 26, 2016
"Modernizing the U.S. electrical grid is essential to reducing carbon emissions, creating safeguards against attacks on our infrastructure, and keeping the lights on," said Secretary Moniz.
Argonne to lead 8 DOE Grid Modernization Projects

Argonne National Laboratory will receive about $19 million in funding and will lead eight projects as part of the Grid Modernization Laboratory Consortium announced earlier today by the U.S. Department of Energy. Argonne will also participate as a partner in 23 other projects.

January 14, 2016
Using the supercomputing resources at the Argonne Leadership Computing Facility, University of Chicago and Argonne researchers have found a way miniaturize microchip components using a technique producing zero defects. This advance will allow semiconductor manufacturers to meet miniaturization target dates to produce smaller components with added functionality for our favorite devices.
Annihilating nanoscale defects

Researchers at the University of Chicago and Argonne may have found a way for the semiconductor industry to hit miniaturization targets on time and without defects.

January 12, 2016
A team of Argonne researchers (from left, Khalil Amine, Jun Lu, Larry Curtiss, Zonghai Chen, Kah Chun Lau, and Hsien-Hau Wang) have developed a way to create stable lithium superoxide in a lithium-air battery system.
Stable "superoxide" opens the door to a new class of batteries

Argonne scientists, working with American and Korean collaborators, produced stable crystallized lithium superoxide during battery discharging. Unlike lithium peroxide, this superoxide can easily dissociate into lithium and oxygen, leading to high efficiency and good cycle life in lithium-air batteries.

January 12, 2016
This image shows an atomic-resolution topographic rendering of the borophene surface, taken in the scanning tunneling microscope. The borophene sheet forms large buckled wrinkles, as seen in the center, in response to the underlying silver crystal. These atomic scale wrinkles may serve to steer the flow of electrons and could lead to other surprising properties. (Click to view larger.)
Scientists create atomically thin metallic boron

A team of scientists at Argonne, Northwestern University and Stony Brook University has, for the first time, created a two-dimensional sheet of boron – a material known as borophene.

December 21, 2015
Cast iron can be modified through the manufacturing process to optimize its mechanical and physical properties, such as strength and durability. This property makes it a material of choice for use in the transportation and machinery industries, which rely on cast iron's resistance to wear, deformation, and rusting to design high-performance bridges, tools, and engine parts.
High-energy X-rays give industry affordable way to optimize cast iron

Researchers from Caterpillar and Argonne conducted a proof-of-principle study that shows that high-energy synchrotron X-rays from the Advanced Photon Source can provide a new, affordable way for industry to optimize the mechanical and physical properties of cast iron in the manufacturing process.

December 7, 2015
This light micrograph shows a region of the chiton’s shell surface with multiple small dark-pigmented eyes composed of aragonite, the same biomineral that also makes up the rest of the shell. Credit: Wyss Institute at Harvard University.
Protective shell of a sea-dwelling chiton paves the way towards new materials

Taking a cue from nature, a cross-institutional collaboration involving researchers from the Wyss Institute for Biologically Inspired Engineering at Harvard and MIT has deciphered how the biomineral making up the body armor of a chiton mollusk has evolved to create functional eyes embedded in the animal’s protective shell.

December 1, 2015
“Just about all of the really significant innovation we have seen over the last four or five decades has been the result of research that preceded that by 10, 20, or even 50 years,” said Suresh Sunderrajan, director of Argonne’s Technology Development and Commercialization division.
Technologist in Residence pilot program pairs companies with national labs to advance clean energy

The U.S. Department of Energy recently selected representatives from Argonne for three of seven spots in its new Technologist in Residence pilot program, created to increase collaboration between the national laboratories and private-sector companies.

December 1, 2015
Members of the Intermediate Energy X-ray collaborative development team standing in front of the beamline. Left to right: Jessica McChesney, Yizhi Fang, Tim Roberts, Mohan Ramanathan, Mike Fisher, Fanny Rodolakis, and Ruben Reininger.
Novel intermediate energy X-ray beamline opening for researchers

Researchers working to create innovative electronic systems and to understand the fundamental properties of magnetism and electronics to tackle grand challenges such as quantum computing have an new tool in their arsenal.

November 20, 2015