Argonne National Laboratory

Press Releases

Date Postedsort ascending
Graduate students Gerwin Koolstra and Ge Yang (left and right), Asst. Prof. David Schuster (center), and collaborators have integrated trapped electrons with superconducting quantum circuits, an advance in the effort to develop quantum computers. (Photo by Rob Hart)
New device steps toward isolating single electrons for quantum computing

If biochemists had access to a quantum computer, they could perfectly simulate the properties of new molecules to develop novel drugs in ways that would take the fastest existing computers decades.

May 20, 2016
Researchers from Argonne’s Surface and Lubrication Interaction, Discovery and Engineering initiative developed a novel “diamond-like” coating that could prove of great benefit when used to coat equipment for wind turbines, like the bearing in this photo. Pictured from left, Levent Eryilmaz, Giovanni Ramirez, Ali Erdemir and Aaron Greco.
Gone with the wind: Argonne coating shows surprising potential to improve reliability in wind power

A group of researchers from Argonne National Laboratory and the University of Akron discovered that a particular form of carbon coating not necessarily designed for wind turbines may indeed prove a boon to the wind industry.

May 17, 2016
Argonne X-ray physicist Haidan Wen received a DOE Early Career Award, a prestigious research grant for $2.5 million over five years. Photo by Wes Agresta/Argonne National Laboratory; click to view larger.
X-ray scientist Haidan Wen wins DOE Early Career Award

Argonne X-ray physicist Haidan Wen received a DOE Early Career Award, a prestigious research grant for $2.5 million over five years.

May 3, 2016
A team of Argonne researchers (from left, Khalil Amine, Jun Lu, Larry Curtiss, Zonghai Chen, Kah Chun Lau, and Hsien-Hau Wang) have developed a way to create stable lithium superoxide in a lithium-air battery system.
Stable "superoxide" opens the door to a new class of batteries

Argonne scientists, working with American and Korean collaborators, produced stable crystallized lithium superoxide during battery discharging. Unlike lithium peroxide, this superoxide can easily dissociate into lithium and oxygen, leading to high efficiency and good cycle life in lithium-air batteries.

January 12, 2016
This image shows an atomic-resolution topographic rendering of the borophene surface, taken in the scanning tunneling microscope. The borophene sheet forms large buckled wrinkles, as seen in the center, in response to the underlying silver crystal. These atomic scale wrinkles may serve to steer the flow of electrons and could lead to other surprising properties. (Click to view larger.)
Scientists create atomically thin metallic boron

A team of scientists at Argonne, Northwestern University and Stony Brook University has, for the first time, created a two-dimensional sheet of boron – a material known as borophene.

December 21, 2015
A schematic representation of the edge-terminated MoS2 on glassy carbon electrode (click image to enlarge)
Promising technique improves hydrogen production of affordable alternative to platinum

Microwave heat improves nanostructured molybdenum disulfide catalyst's ability to produce hydrogen.

October 26, 2015
A team of researchers from Argonne’s Materials Science Division and Northern Illinois University, working with researchers at Argonne’s Center for Nanoscale Materials, report two new findings on tungsten ditelluride: (1) WTe2 is electronically three-dimensional with a mass anisotropy as low as 2, and (2) the mass anisotropy varies with temperature and follows the magnetoresistance behavior of the Fermi liquid state. The results not only provide a general scaling approach for the anisotropic magnetoresistance but also are crucial for correctly understanding the electronic properties of WTe2, including the origin of the remarkable “turn-on” behavior in the resistance versus temperature curve, which has been widely observed in many materials and assumed to be a metal-insulator transition. (Click image to enlarge.)
Scientists gain insight into origin of tungsten ditelluride's magnetoresistance

Two new significant findings may move scientists closer to understanding the origins of tungsten ditelluride's extremely large magnetoresistance, a key characteristic in modern electronic devices such as magnetic hard drives and sensors.

October 19, 2015
An international team of scientists has discovered how to measure the resistance of a nanomembrane to both bending and stretching by rolling it into a tube and performing a single experiment to measure the tube's bending resistance along its length. Previous methods required two experiments: one to measure a nanomembrane's bending resistance and another to measure its stretching resistance. The discovery is expected to aid researchers working to make three-dimensional objects and devices from two-dimensional membranes only one nanoparticle thick. The transmission electron micrograph on the right was obtained at Argonne’s Center for Nanoscale Materials.  (Click for larger view.)
Gold nanomembranes resist bending in new experiment

The first direct measurement of resistance to bending in a nanoscale membrane has been made by scientists from the University of Chicago, Peking University, the Weizmann Institute of Science and Argonne National Laboratory.

October 8, 2015
Harry Weerts has been named the associate laboratory director for Argonne's Physical Sciences and Engineering directorate. (Click image to view larger.)
Weerts to lead Physical Sciences and Engineering directorate

Hendrik (Harry) Joseph Weerts has been named the associate laboratory director for the Physical Sciences and Engineering directorate at Argonne National Laboratory.

August 10, 2015
A copper tetramer catalyst created by researchers at Argonne National Laboratory may help capture and convert carbon dioxide in a way that ultimately saves energy. It consists of small clusters of four copper atoms each, supported on a thin film of aluminum oxide. These catalysts work by binding to carbon dioxide molecules, orienting them in a way that is ideal for chemical reactions. The structure of the copper tetramer is such that most of its binding sites are open, which means it can attach more strongly to carbon dioxide and can better accelerate the conversion. (Image courtesy Larry Curtiss; click to view larger.)
Copper clusters capture and convert carbon dioxide to make fuel

The chemical reactions that make methanol from carbon dioxide rely on a catalyst to speed up the conversion, and Argonne scientists identified a new material that could fill this role. With its unique structure, this catalyst can capture and convert carbon dioxide in a way that ultimately saves energy.

August 6, 2015