Press Releases

Date Postedsort ascending
The NMDA receptor is a massive, multi-subunit complex. CSHL researchers found that it looks much like a hot air balloon. The upper, balloon-like portion of the structure is found outside the cell and responds to chemical messengers. Those messengers act like a key to unlock the lower portion of the receptor. This lower portion, corresponding to the basket of the hot air balloon, is embedded in the neuron’s membrane. It creates a narrow channel that allows ions, or electrically charged atoms, to flow into the cell. These many subunit interactions are potential targets for drug discovery. Click to enlarge.
Unprecedented detail of intact neuronal receptor offers blueprint for drug developers

Scientists succeeded in obtaining an unprecedented view of a type of brain-cell receptor that is implicated in a range of neurological illnesses, including Alzheimer’s disease, Parkinson’s disease, depression, schizophrenia, autism, and ischemic injuries associated with stroke.

July 7, 2014
Experts are developing new engine combustion models that incorporate accurate descriptions of two-phase flows, chemistry, transport phenomena and device geometries to provide predictive simulations of engine and fuel performance. Click to enlarge.
Caterpillar, Argonne undertake cooperative virtual engine design, control project

Internal combustion engines are poised for dramatic breakthroughs in improving efficiency with lower emissions, thanks in part to low-temperature combustion regimes. Such regimes show great efficiency and emissions potential, but they present optimization and control challenges that must be addressed before they enter the engine mainstream.

June 30, 2014
Argonne recognized with 2014 Best Diversity Company award

The readers of Diversity/Careers in Engineering & Information Technology have recognized Argonne National Laboratory as a 2014 Best Diversity Company.

June 25, 2014
The Ohio State University took home the overall winners title at the EcoCAR 2: Plugging In to the Future finals last week. EcoCAR 2 was a three-year competition managed by Argonne National Laboratory and sponsored by the U.S. Department of Energy, General Motors and 30 other government and industry leaders. Click to enlarge.
The Ohio State wins North American EcoCAR 2 competition

The Ohio State University took home the overall winners title at the EcoCAR 2: Plugging In to the Future finals, said competition sponsors the U.S. Department of Energy and General Motors Co. last week.

June 20, 2014
This figure shows a model of the interface between an electrolyte (gray, above) and an electrode (the crystal structure, below) inside a lithium battery.  Scientists at the Center for Electrochemical Energy Science, an Energy Frontier Research Center recently awarded four more years of funding by the U.S. Department of Energy, are working to understand the fundamental science that happens inside battery systems so that we can build better batteries. Figure courtesy Paul Fenter/Argonne National Laboratory. Click to enlarge.
Argonne named in several DOE Energy Frontier Research Center awards

The US Department of Energy announced June 18, 2014, that it is funding a total of $100 million in 32 Energy Frontier Research Centers, including one at Argonne and several more in which Argonne will closely partner with other national laboratories and universities.

June 19, 2014
We live atop the thinnest layer of the Earth: the crust. Below is the mantle (red), outer core (orange), and finally inner core (yellow-white). The lower portion of the mantle is the largest layer – stretching from 400 to 1,800 miles below the surface. Research at Argonne’s Advanced Photon Source recently suggested the makeup of the lower mantle is significantly different from what was previously thought. Image by Johan Swanepoel/Shutterstock. Click to enlarge.
Composition of Earth’s mantle revisited thanks to research at Argonne’s Advanced Photon Source

Research published last week in Science suggested that the makeup of the Earth’s lower mantle, which makes up the largest part of the Earth by volume, is significantly different than previously thought.

June 17, 2014
A metal oxide drop levitated in a flow of gas is heated from above with a laser beam so that researchers can study the behavior of this class of ceramics under high temperatures. Image courtesy of Spallation Neutron Source at Oak Ridge National Laboratory. Click to enlarge.
Neutrons and X-rays reveal structure of high-temperature liquid metal oxides

By levitating a bead of ceramic oxide, heating it with a 400-watt carbon dioxide laser, then shooting the molten material with X-rays and neutrons, scientists with the Department of Energy’s Oak Ridge and Argonne national laboratories have revealed unprecedented detail of the structure of high-temperature liquid oxides.

June 9, 2014
A new study by Argonne and Northwestern scientists reported that solar panels manufactured in China are likely to use more energy to make and have a larger carbon footprint than those made in Europe. Image by Renee Carlson / Argonne National Laboratory. Click to enlarge.
Solar panel manufacturing is greener in Europe than China, study says

Solar panels made in China have a higher overall carbon footprint and are likely to use substantially more energy during manufacturing than those made in Europe, said a new study from Northwestern University and Argonne.

May 29, 2014
Argonne materials scientists Seungbum Hong (left) and Andreas Roelofs adjust an atomic force microscope.
Click to enlarge. Photo credit: Wes Agresta/Argonne National Laboratory.
Microscopy charges ahead

In order to see the true polarization states of ferroelectric materials quickly and efficiently, researchers at the U.S. Department of Energy’s Argonne National Laboratory have developed a new technique called charge gradient microscopy.

May 28, 2014
Researchers have discovered how to overcome technical challenges that hindered use of Stabilized Lithium Metal Powder (SLMP®) in commercial applications by devising a way to incorporate a safe form of the lithium powder into any type of Li-ion battery, including those used for electric vehicles, enabling greater energy density, extended cycle-life and reduced manufacturing costs. Click to enlarge.
FMC-Argonne project could expand use of company's lithium technology

Researchers at the U.S. Department of Energy's Argonne National Laboratory working with FMC Corporation (NYSE:FMC), Charlotte, N.C., have developed novel materials that would help expand technology and product development by industries using the company's unique Stabilized Lithium Metal Powder (SLMP®).

May 28, 2014