Argonne National Laboratory

Feature Stories

Date Postedsort ascending
Schematic of the experimental setup. Six YIG/Pt nanowires (in red) integrated in the signal arm (S) are measured in parallel. A bias-T is utilized for simultaneous RF transmission and DC voltage detection by lock-in techniques. (Image adapted from Jungfleisch et al., Nano Lett., 17, 8 (2017).)
Report sheds new insights on the spin dynamics of a material candidate for low-power devices

In a report published in Nano LettersArgonne researchers reveal new insights into the properties of a magnetic insulator that is a candidate for low-power device applications; their insights form early stepping-stones towards developing high-speed, low-power electronics that use electron spin rather than charge to carry information.

May 22, 2017
The researchers integrated X-ray imaging with computer modeling and simulation to characterize zinc oxide nanoparticles, which have attractive electrical properties for use in technologies. Shown above, from left to right, are co-authors Mathew Cherukara, Ross Harder, Haidan Wen and Kiran Sasikumar. (Image by Mark Lopez/Argonne National Laboratory)
X-ray imaging and computer modeling help map electric properties of nanomaterials

Argonne researchers have developed a new approach for studying piezoelectric materials using ultrafast 3-D X-ray imaging and computer modeling. Their integrated approach, reported in Nano Letters, can help us better understand material behavior and engineer more powerful and energy-efficient technologies.

May 4, 2017
Argonne researchers have created skyrmions – ordered regions of magnetic spins – by using a spiraling focused ion beam. (Illustration by Robert Horn / Argonne National Laboratory.)
Skyrmions created with a special spiral

Researchers at Argonne have found a way to control the creation of special textured surfaces, called skyrmions, in magnetically ordered materials.

April 5, 2017
Click to view infographic larger.
Four fantastic materials found at Argonne

New materials are the seeds for new technologies. Here are four discoveries with never-before-seen properties that could lead to new devices, innovations, or breakthroughs.

April 3, 2017
"To take the next step in nanoscience, we need to master reproduction and adaptation. How can we think about making it easier to repair individual units in artificial systems?"
Crowdsource: What will your field of science look like in 50 years?

CROWDSOURCE asks Argonne scientists from different disciplines to each provide a perspective on a complex question. Today we’re asking: What might your field of science look like in 50 years?

April 3, 2017
Scientists have used a new X-ray diffraction technique called Bragg single-angle ptychography to get a clear picture of how planes of atoms shift and squeeze under stress. (Image by Robert Horn/Argonne National Laboratory.)
Single-angle ptychography allows 3D imaging of stressed materials

Scientists have used a new X-ray diffraction technique called Bragg single-angle ptychography to get a clear picture of how planes of atoms shift and squeeze under stress.

March 21, 2017
Students from Stony Brook University visited Argonne with research professor Nils Feege to test a prototype of a magnetic cloak — a crucial piece of equipment for a next-generation particle collider — at Argonne’s 4-Tesla Magnet Facility. From left to right: Thomas Krahulik, Nils Feege, Rourke Sekelsky, Joshua LaBounty and Stacy Karthas. (Image by Nils Feege.)
A road trip to test a magnetic cloak at Argonne National Laboratory

In December, five students from Stony Brook University in New York and their research professor loaded a prototype of a magnetic cloak into an SUV and set off for Argonne National Laboratory, nearly 900 miles away.

February 24, 2017
In a new study, Argonne scientists have discovered a way to confine the behavior of electrons by using extremely high magnetic fields. (Image by Argonne National Laboratory.)
Electrons "puddle" under high magnetic fields, study reveals

In a new study, researchers used extremely high magnetic fields — equivalent to those found in the center of neutron stars — to alter electronic behavior. By observing the change in the behavior of these electrons, scientists may be able to gain an enriched understanding of material behavior.

January 3, 2017
Inside an engine is a harsh place: the intense heat and pressure cause the parts to wear away and break down. But this new coating, which rebuilds itself as soon as it begins to break down, could protect engine parts (and more) for much longer.
9 cool science & tech stories from Argonne in 2016

As 2016 draws to a close, we’re looking back at just a few of the many cool stories that came out of research conducted by Argonne scientists and engineers this year. These discoveries are just a tiny sample of how Argonne researchers help address energy challenges, boost the economy through new discoveries and technologies, and expand scientific knowledge.

December 22, 2016
This image of a quasicrystal lattice shows the unique symmetric but never repeating pattern of its components.  The colors correspond to the orientation of the magnetic polarization of each edge. (Image by Amanda Petford-Long, Argonne National Laboratory.)
Energy cascades in quasicrystals trigger an avalanche of discovery

In a new study from Argonne National Laboratory, scientists looked at networks of magnetic material patterned into the unique and quite beautiful geometries of quasi-crystals to see how the nature of the non-repeating patterns lead to the emergence of unusual energetic effects.

December 12, 2016