@article {4068,
title = {Computing f(A)b via Least Squares Polynomial Approximations},
journal = {SIAM Journal on Scientific Computing},
volume = {33},
year = {2011},
month = {01/2011},
pages = {195-222},
abstract = {Given a certain function f, various methods have been proposed in the past for addressing the important problem of computing the matrix-vector product f(A)b without explicitly computing the matrix f(A). Such methods were typically developed for a specific function f, a common case being that of the exponential. This paper discusses a procedure based on least squares polynomials that can, in principle, be applied to any (continuous) function f. The idea is to start by approximating the function by a spline of a desired accuracy. Then, a particular definition of the function inner product is invoked that facilitates the computation of the least squares polynomial to this spline function. Since the function is approximated by a polynomial, the matrix A is referenced only through a matrix-vector multiplication. In addition, the choice of the inner product makes it possible to avoid numerical integration. As an important application, we consider the case when f(t) = \&$\#$8730;t and A is a sparse, symmetric positive-definite matrix, which arises in sampling from a Gaussian process distribution. The covariance matrix of the distribution is defined by using a covariance function that has a compact support, at a very large number of sites that are on a regular or irregular grid. We derive error bounds and show extensive numerical results to illustrate the effectiveness of the proposed technique.},
author = {Jie Chen and Mihai Anitescu and Y. Saad}
}