Argonne National Laboratory

Science Highlights

Date Postedsort ascending
Technology available for license: Charging of liquid energy storage media through radiolysis (ANL-IN-14-036)

This technology utilizes radiolysis to charge liquid energy storage media including nanoelectrofuels. Charged liquid can be used in flow batteries for transportation and stationary energy-storage applications.

January 23, 2015
Argonne’s Combined Heat and Power Plant team members helped secure a multimillion dollar Energy Savings Performance Contract to help offset the cost of the project. Left to right: Mike Dunn, Dan Nassar, Sean Seamon, John Daum, Greg Barrett, Greg Jonas, Steve Hunsberger and Chris Jablonski.
Argonne receives 2014 DOE Sustainability Award

Argonne has been recognized with the 2014 U.S. Department of Energy Sustainability Award for its efforts towards meeting White House and DOE goals in energy performance contracting.

January 5, 2015
A Sankey diagram illustrating transition probabilities between the accessible electronic configurations (EC) of an argon atom exposed to an intense XFEL pluse at 480-electronvolts. The vertical bars represent ECs, and the width of each green branch, going from left to right, indicate the  transition probability. (Click to enlarge).
Ultrafast imaging of complex systems in 3-D at near atomic resolution becoming increasingly possible

It is becoming possible to image complex systems in 3-D with near-atomic resolution on ultrafast timescales using extremely intense X-ray free-electron laser pulses.

December 16, 2014
Silver particles improve performance of battery material

Argonne materials scientist Larry Curtiss is part of an Argonne team working on a new battery architecture that uses lithium-oxygen bonds as it stores and releases energy, and silver as the metal catalyst that makes this possible.

December 16, 2014
This image shows what happens in a detector after colliding two protons, each with an energy of roughly 50 TeV.  This single collision event was taken 
from a simulation of roughly 400 million events. Blue lines represent the tracks of charged  particles, red lines represent electrons and muons. Yellow cones represent hadronic jets with energies above 3 TeV. Image by Sergei Chekanov; click to view larger.
Researchers create enormous simulation of proton collisions

Scientists from Argonne and the University of Chicago have created one of the world's largest samples of Monte Carlo simulated proton-proton collisions. The data sample contains 400 million events, each of which contains 5500 particles on average, totaling more than 2 trillion generated particles.

December 12, 2014
Recent research from Argonne has revealed that a novel form of superconductivity researchers call "critical superconductivity" may be accessed in a special regime lying at the boundary between type I and type II superconductivity. (Click image to enlarge)
Newly discovered superconductor state opens a window to the evolution of the universe

Recent research from the U.S. Department of Energy’s Argonne National Laboratory has revealed that a novel form of superconductivity the researchers call “critical superconductivity” may be accessed in a special regime lying at the boundary between type I and type II superconductivity.

November 25, 2014
Ultrananocrystalline diamond thin films have shown a great deal of promise in the semiconductor and microelectromechanical systems industries. (Click image to enlarge).
Argonne researchers develop two new diamond inventions

Argonne researchers have continued their research into advanced ultrananocrystalline diamond technologies and have developed two new applications for this special material.

October 10, 2014
An atomic diagram of an organometallic agostic interaction. Click image to enlarge.
Argonne researchers make new study of special type of chemical bond

Scientists have known for some time about the presence of agostic interactions involving lithium, carbon, and hydrogen atoms, but Argonne scientists wanted to determine what happened when an aluminum-containing fragment was appended to one of these organolithium complexes to form a lithium-aluminate compound.

September 29, 2014
New insight into how the Ebola virus evades the human immune system will aid the search for improved treatments for this deadly infection. The micrograph above shows individual Ebola viral particles. Click to enlarge. Image credit: CDC/Cynthia Goldsmith.
Study reveals how Ebola blocks immune system

Researchers at the Washington University School of Medicine have identified one way the Ebola virus dodges the body's antiviral defenses, providing important insight that could lead to new therapies, in research results published in the journal Cell Host & Microbe.

August 15, 2014
The expected atomic structure of film based on the growth sequence and layer swap that occurs in the real growth. Click to enlarge.
Argonne scientists pioneer strategy for creating new materials

A recent article in Nature Materials describes how Argonne researchers used X-ray scattering during a process called molecular beam epitaxy to observe the behavior of atoms during the formation of a type of material known as layered oxides. These observations were then used as data for computational predictions of new materials, leading to insights on how to best combine atoms to form new, stable structures.

August 14, 2014