Argonne National Laboratory

Press Releases

Date Postedsort ascending
The Binary Pseudo-Random Calibration Tool provides the highest resolution ever achieved, 1.5 nanometers, and is used to characterize all advanced imaging systems from interferometers to electron microscopes. Pictured is lithographically produced BPR grating for investigating interferometers.
Argonne researchers win two R&D 100 Awards

Innovative technologies developed by researchers at Argonne and their partners earned two 2015 R&D 100 Awards.

November 16, 2015
Argonne materials scientist Vojislav Stamenkovic probes the structure–function relationship of new electrocatalysts being developed for polymer electrolyte fuel cells using an ultrahigh-vacuum technique.(Click image to enlarge.)
National labs team to develop better, cheaper fuel cells

Argonne has joined a project funded by DOE's Fuel Cell Technologies Office to enhance the performance and durability of polymer electrolyte membrane fuel cells, while simultaneously reducing their cost.

October 9, 2015
ACCESS Director Jeff Chamberlain and Argonne scientist and ACCESS R&D team member Vojislav Stamenkovic discuss an ultrahigh vacuum system, designed for synthesizing new electrode materials and characterizing their composition and structure for use in novel battery technologies, in the Electrochemistry Discovery Lab. (Click on image to enlarge.)
New Argonne centers connect business with energy storage, nanotechnology research

ACCESS and Nano Design Works will help expedite commercialization of technology.

October 6, 2015
Argonne Mechanical Engineer Wenhua Yu installs a cylinder of high-conductivity foam into a prototype container as former postdoctoral fellow Taeil Kim, makes adjustments to a heat transfer loop in the background. Argonne researchers received funding from the U.S. Department of Energy SunShot Initiative to scale up and demonstrate their novel thermal energy storage system, which efficiently stores solar energy as heat for later use generating electricity. Total project funding is $1.6 million and includes an industry cost sharing arrangement. (Click image for larger view).
SunShot Initiative award funds scaleup of Argonne’s leading-edge thermal energy storage system

On September 16, 2015, the U.S. Department of Energy SunShot Initiative program announced funding awards to several research projects that aim to make concentrating solar power (CSP) plants cost competitive with traditional forms of electricity.

September 16, 2015
Artist rendering of Array of Things nodes mounted on city streetlight poles. The Array of Things is an an “urban sensing” instrument, measuring data on cities' environment, infrastructure and activity in order to scientifically investigate solutions to urban challenges ranging from air quality to urban flooding. Credit: Douglas Pancoast & Satya Mark Basu, School of the Art Institute of Chicago/Array of Things
National Science Foundation awards $3.1 million to Chicago's Array of Things Project

NSF Grant will fund production and installation of 500 nodes in Chicago

September 14, 2015
Scientists at Argonne National Lab have developed a new fuel cell catalyst using earthly abundant materials with performance that is comparable to platinum in laboratory tests. If commercially viable, the new catalyst could replace platinum in electric cars powered by fuel cells instead of batteries, which would greatly extend the range of electric vehicles and eliminate the need for recharging. This figure shows the microstructural difference between conventional catalysts and the new reduced-platinum catalyst. (Image courtesy Di-Jia Liu; click to view larger).
New catalyst may hasten commercialization of fuel cell vehicles

Supported by DOE’s Fuel Cell Technologies Office, scientists at Argonne have developed a new fuel cell catalyst using earthly abundant materials with performance that is comparable to platinum in laboratory tests. If commercially viable, the new catalyst could replace platinum in electric cars powered by fuel cells instead of batteries, which would greatly extend the range of electric vehicles and eliminate the need for recharging.

August 25, 2015
Argonne principal mechanical engineer Sibendu Som (left) and computational scientist Raymond Bair discuss combustion engine simulations conducted by the Virtual Engine Research Institute and Fuels Initiative (VERIFI). The initiative will be running massive simulations on Argonne’s Mira supercomputer to gain further insight into the inner workings of combustion engines. (Click image to view larger.)
Argonne pushing boundaries of computing in engine simulations

Researchers at Argonne will be testing the limits of computing horsepower this year with a new simulation project from the Virtual Engine Research Institute and Fuels Initiative that will harness 60 million computer core hours to dispel uncertainties and pave the way to more effective engine simulations.

August 24, 2015
Argonne researchers Osman Eryilmaz (left) and Gerald Jeka (right) recover industrial parts from the large-scale ultra-fast boriding furnace after a successful boriding treatment. This process for extending the lifetime of mechanical parts, which just received its U.S. patent, saves time, money and energy compared to conventional technique, and even alleviates environmental concerns. (Click image to view larger.)
Erdemir receives patent for ultra-fast surface hardening technology

A newly patented technology by Distinguished Fellow Ali Erdemir and his team at Argonne National Laboratory could greatly extend the lifetime of mechanical parts. The team designed a device for ultra-fast boriding, which compared to conventional boriding techniques saves time, money and energy, and even alleviates environmental concerns.

August 11, 2015
A copper tetramer catalyst created by researchers at Argonne National Laboratory may help capture and convert carbon dioxide in a way that ultimately saves energy. It consists of small clusters of four copper atoms each, supported on a thin film of aluminum oxide. These catalysts work by binding to carbon dioxide molecules, orienting them in a way that is ideal for chemical reactions. The structure of the copper tetramer is such that most of its binding sites are open, which means it can attach more strongly to carbon dioxide and can better accelerate the conversion. (Image courtesy Larry Curtiss; click to view larger.)
Copper clusters capture and convert carbon dioxide to make fuel

The chemical reactions that make methanol from carbon dioxide rely on a catalyst to speed up the conversion, and Argonne scientists identified a new material that could fill this role. With its unique structure, this catalyst can capture and convert carbon dioxide in a way that ultimately saves energy.

August 6, 2015
Lithium ions react with silicon to form a new compound, which causes the electrode to expand. Researchers found that flouroethylene carbonate molecules produce a rubber-like protective layer that can accommodate the electrode expansion. Infographic by Sana Sandler/Sarah Schlieder; click to view larger.
Protective shells may boost silicon lithium-ion batteries

Researchers found that fluoroethylene carbonate creates a rubber-like protective shell around the negative electrode inside silicon-based lithium-ion batteries.

August 5, 2015